
Soft Matching for Question Answering

Hang Cui

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the School of Computing

NATIONAL UNIVERSITY OF SINGAPORE

2006

c©2006

Hang Cui

All Rights Reserved

Acknowledgments

This thesis would not have been possible without the support, direction and

love of a multitude of people. First, I have been truly blessed to have two won-

derful advisors on the path of scholarship, whose skills have greatly complemented

each other and gave me the unique chance to explore my work in both information

retrieval and natural language processing. Tat-Seng Chua, who led me through the

four tough years by reminding me of the big picture in my research, is always sup-

portive and accommodating to my ideas. Min-Yen Kan, for his continuous efforts

and great patience in discussions and formulations of my work, as well as detailed

editing. What I very much owe to my advisors are not only the academic training

they have given me, but also the way they have taught me to deal with various

challenges on my career path. They selflessly shared with me their invaluable expe-

rience in both work and life, which will accompany and motivate me for the whole

life.

I have been blessed to have had many supporting my endeavors for scholar-

ship since the very beginning of this work, playing multiple roles for which I am

greatly thankful for:

My parents Han-Sheng Cui and Yong-Mei Suo, and my wife Adela Junwen

Chen for the moral support. I would not have finished my thesis without their

backing locally and remotely.

My thesis committee members: Hwee-Tou Ng, Lim-Chew Tan, Wee-Sun

Lee and my external examiner for their critical readings of the thesis and giving

constructive criticism that enabled me to clarify claims and contributions which

needed additional coverage in the thesis.

I am also grateful to those who have spent time discussing my work with me

and gave their constructive comments. They have helped me think of the problems

more deeply and more extensively: Jimmy Lin from the University of Maryland,

iii

College Park; Sanda Harabagiu from University of Texas at Dallas; John Tait from

University of Sunderland.

I am also indebted to Krishna Bharat and Vibhu Mittal from Google Inc.,

who provided me precious opportunities of internship at Google, which let me see

the opportunities of information retrieval and natural language processing in real

world.

Thanks also go to those who kindly allowed me to make use of their software

tools to complete the work more efficiently: Dekang Lin for Minipar and Dina

Demner-Fushman for the POURPRE evaluation tool;

and finally Line Fong Loo, for her always kind help in co-ordinating all

administrative stuffs in my four years in the school of computing.

I am also grateful for the comments from the anonymous reviewers of the

papers I have had the privilege of publishing in conferences, workshops and jour-

nals. I have been financially supported by the Singapore Millennium Foundation

Scholarship (ref no. 2003-SMS-0230) for three years (2003 – 2006), and had been

supported by the National University of Singapore graduate scholarship for one

year (2002 – 2003).

iv

To my beloved wife, Adela Junwen Chen.

To my parents, Han-Sheng Cui and Yong-Mei Suo.

v

Contents

Chapter 1 Introduction 1

1.0.1 Problem Statement . 4

1.1 Soft Matching Schemes . 4

1.2 The Integrated QA System . 5

1.2.1 Soft Matching in the QA System 7

1.3 Contributions . 8

1.4 Guide to This Thesis . 9

Chapter 2 Background 11

2.1 Overview of Question Answering 11

2.2 Lexico-Syntactic Pattern Induction 14

2.3 Definitional Question Answering . 16

2.3.1 Definitional Linguistic Constructs 19

2.3.2 Statistical Ranking . 21

2.3.3 Related Work . 22

2.3.3.1 Domain-Specific Definition Extraction 22

2.3.3.2 Query-Dependent Summarization 24

2.4 Passage Retrieval for Factoid Question Answering 26

2.4.1 Attempts in Previous Work 28

i

Chapter 3 Architecture of the Question Answering System 30

3.1 The Subsystem for Definitional QA 32

3.1.1 Bag-of-Words Statistical Ranking of Relevance 34

3.1.1.1 External Knowledge 35

3.1.2 Definition Sentence Summarization 36

Chapter 4 A Simple Soft Pattern Matching Model 38

4.1 Generalization of Pattern Instances 39

4.2 Constructing Soft Pattern Vector 41

4.3 Soft Pattern Matching . 43

4.4 Unsupervised Learning of Soft Patterns by Group Pseudo-Relevance

Feedback . 45

4.5 Evaluations . 47

4.5.1 Data Sets . 48

4.5.2 Comparison Systems Using Hard Matching Patterns 48

4.5.2.1 The HCR System 49

4.5.2.2 Hard Pattern Rule Induction by GRID 49

4.5.3 Evaluation Metrics . 50

4.5.4 Effectiveness of Unsupervised Learned Soft Patterns 51

4.5.5 Comparison with Hard Matching Patterns 53

4.5.6 Additional Evaluations on the Use of External Knowledge . 55

4.6 Conclusion . 56

Chapter 5 Two Formal Soft Pattern Matching Models 58

5.1 Bigram Model . 59

5.1.1 Estimating the Mixture Weight λ 61

5.2 Profile Hidden Markov Model . 62

5.2.1 Estimation of the Model . 65

ii

5.2.2 Initialization of the Model 65

5.3 Evaluations . 66

5.3.1 Evaluation Setup . 66

5.3.1.1 Data Set . 66

5.3.1.2 Evaluation Metrics 67

5.3.1.3 Gold Standard for Automatic Scoring 68

5.3.1.4 System Settings . 69

5.3.2 Analysis of Sensitivity to Model Length 72

5.3.3 Comparison to the Basic Soft Matching Model 73

5.3.4 Main Evaluation Results and Discussion 74

5.4 Conclusion . 79

Chapter 6 Soft Matching of Dependency Relations 80

6.1 Soft Relation Matching for Passage Retrieval 81

6.1.1 Extracting and Paring Relation Paths 83

6.1.2 Measuring Path Matching Scores by Translation Model . . . 85

6.1.3 Relation Match Model Training 87

6.2 Evaluation . 89

6.2.1 Evaluation Setup . 89

6.2.2 Performance Evaluation . 91

6.2.3 Performance Variation to Question Length 94

6.2.4 Performance with Query Expansion 95

6.2.5 Case Study: Constructing a Simple System for TREC QA

Passage Task . 97

6.2.6 Error Analysis and Discussions 98

6.3 Conclusion . 99

iii

Chapter 7 Conclusion 101

7.1 Contributions . 101

7.1.1 Soft Matching Models for Lexico-Syntactic Patterns 102

7.1.2 Soft Matching of Dependency Relations for Passage Retrieval 103

7.1.3 Two Components for an Integrated Question Answering System104

7.2 Limitations of this Work . 104

7.3 Future Work . 106

Appendix A 120

Appendix B Evaluation on the Use of External Knowledge 127

B.1 Impact of External Knowledge on the Baseline System 127

B.2 Impact of External Knowledge on GPRF 128

iv

Abstract

Soft Matching for Question Answering

Hang Cui

I identify weaknesses in exact matching of syntactic and semantic features

in current question answering (QA) systems. Such hard matching may fare poorly

given variations in natural language texts. To combat such problems, I develop two

soft matching schemes. I implement both soft matching schemes using statistical

models and apply them to two components in a QA system. Such a QA system is

designed to fulfill the information need of advanced users who search for information

in a systematic way. Taking a search target as input, the QA system can produce

a summarized profile, or definition, for the target and answer a series of factoid

questions about the target.

To build up the QA system, I develop two key components – (1) the defini-

tional question answering system that generates the definition for a given target;

and (2) the factoid question answering system that is responsible for answering

specific questions. In this thesis, I focus on precise sentence retrieval for these two

components and evaluate them component-wise.

To retrieve definition sentences that construct the definition, I apply lexico-

syntactic pattern matching to identify definition sentences. Most current systems

employ hard matching of manually constructed definition patterns, which may have

the problem of low recall due to language variations. To combat this problem,

I adopt the soft matching scheme anchored at the search target. In particular,

I develop three soft pattern models – a simple baseline model and two formal

ones based on the bigram model and the Profile Hidden Markov Model (PHMM),

respectively. The soft pattern models generalize pattern matching as the process

of producing token sequences. I experimentally show that employing soft pattern

models greatly outperforms the system that utilizes hard matching of pattern rules.

To obtain precise answer sentences for a specific factoid question about a

target, I examine the dependency relations between matched question words in

addition to lexical matching. As the same relations may be phrased differently, I

adopt another soft matching scheme. Specifically, I employ a machine translation

model to implement this soft matching scheme to compute the similarity between

multiple relations. I experimentally demonstrate that the passage retrieval perfor-

mance is significantly augmented by combining soft relation matching with lexical

matching.

The main contribution of this thesis is in developing soft matching schemes

to flexibly match both lexico-syntactic patterns and dependency relations, and ap-

plying the soft matching models to sentence retrieval for answering definition and

factoid questions.

ii

List of Tables

2.1 Summary of Techniques Employed by TREC Systems 18

4.1 Heuristics Used for Selective Substitution 40

4.2 Manually Constructed Rules Used in HCR. 49

4.3 TREC Definition of NR, NP and Fβ Measure 51

4.4 Comparison of NR, NP, F3 and F5 measures. Percentage of improve-

ment over the baseline is shown in the brackets. 52

4.5 Comparison with Hard Patterns. Percentage of improvement over

the baseline is shown in the brackets. 54

5.1 Gold Standard Sentences for the Topic 72 “Bollywood”. This is one

of the five groups of gold standard sentences. The third column

indicates from what kind of question the nugget is constructed. . . . 70

5.2 Hard Definition Patterns Used in the Baseline System 71

5.3 ROUGE-3 with Different Model Lengths. The percentage values

in parentheses are difference measures compared to the maximum.

Note that PHMM SP’s minimum length for training is 3. 72

5.4 F3 and ROUGE Performance Comparison (percentage improvement

shown in brackets). 73

i

5.5 Performance Comparison of F3, POURPRE and ROUGE Scores on

TREC-14 Data Set (trained on TREC-13 and 12 data) - percent-

age of improvement over the baseline is shown in the brackets; **

and * represent different significance levels, p < 0.01 and p < 0.05,

respectively. 75

5.6 Performance Comparison of F3, POURPRE and ROUGE Scores on

TREC-13 Data Set (trained on TREC-12 data) - percentage of im-

provement over the baseline is shown in the brackets; ** and * rep-

resent different significance levels, p < 0.01 and p < 0.05, respectively. 76

6.1 Overall Performance Comparison of MRR, Percentage of Incorrectly

Answered Questions (% Incorrect) and Precision at Top One Pas-

sage. Strict relation matching is denoted by Rel Strict, with the

base system in parentheses. Soft relation matching is denoted by

Rel MI or Rel EM for both training methods. All improvements ob-

tained by relation matching techniques are statistically significant

(p < 0.001) . 92

6.2 Performance Comparison with Query Expansion. All the improve-

ments shown are statistically significant (p − value < 0.001). 96

A.1 Techniques Employed by Recent TREC Systems to Answer Defini-

tion Questions . 120

A.2 The 26 Questions for the Evaluation on the Web Corpus. 126

B.1 Impact of External Knowledge on the Baseline System. 128

B.2 Impact of External Knowledge on GPRF. 129

ii

List of Figures

2.1 A Sample Series in TREC-2004 . 12

2.2 A Sample Definition Question and Answer Nuggets from TREC . . 17

2.3 Sample Question and Candidate Passages Illustrate that lexical match-

ing can lead to incorrect answers. 27

3.1 Illustration of the Architecture of the Integrated QA System 31

3.2 Illustration of the Architecture of the Definitional QA Subsystem . 33

3.3 Sample Pattern Instances Generated after Pre-processing 33

3.4 Definition Sentence Summarization Algorithm 37

4.1 Illustration of Generalization of Pattern Instances 39

4.2 Constructing Soft Pattern Vectors 42

4.3 The Algorithm for Unsupervised Learning of Soft Patterns 46

4.4 Sample Rules Generated by GRID. 50

5.1 Illustration of Topology of the PHMM Model 63

5.2 Illustration of Generating a Test Instance with Gaps Using the PHMM.

Optimal path in bold; words or tags emitted shown in callouts. . . . 64

6.1 Dependency Trees for the Sample Question and Sentence S1 in Fig-

ure 2.3. Some nodes are omitted due to lack of space. 83

6.2 Relation Paths Extracted from the Dependency Trees in Figure 6.1. 84

iii

6.3 MRR Variation w.r.t. Number of Question Terms. 95

iv

1

Chapter 1

Introduction

With the advent of Internet, the Web has grown to an enormous knowledge repos-

itory, which archives more information than any library on the planet. Facing such

a huge virtual library, finding useful information is just like finding a needle in the

hay. Nowadays, searching for information on the Web has become part of people’s

life. To meet this huge demand, search engines (SE) dominate the attention of

people. As the “database of our intentions” (Battelle, 2005), search engines, such

as Google1 and Yahoo!2, help people explore the Web to find useful information.

Despite the great success of Web search engines, people still face the prob-

lem of how to find precisely what they really want. Question answering (QA) is

one technology that addresses this problem. In contrast to information retrieval,

question answering attempts to return exact answers in response to a query. Cur-

rent QA systems mainly deal with fact-oriented questions that ask for facts about

a target, such as a person or an organization. In the Text Retrieval Conference (or

TREC, (Voorhees, 2000)), open-domain QA is evaluated on a large news corpus.

Fact-oriented questions are divided into three types - factoid, list and definition

questions. Factoid questions, such as “When was Aaron Copland born?”, require

1http://www.google.com
2http://www.yahoo.com

2

exact phrases or text fragments as answers. List questions, like “List all works

by Aaron Copland”, ask for a list of answers belonging to the same group. While

factoid and list questions cover specific aspects of the target, definition questions

expect a summary of all important facets related to a given target. For instance, for

the question “Who is Aaron Copland?”, the user may want to know when and where

he was born, why he was famous, his main musical works and other supplementary

information like his activities as a communist. To answer such a question, a QA

system has to identify definitions about the target from the corpus and summarize

them to form an answer.

The state-of-the-art QA systems have complex architectures. They draw on

statistical passage retrieval (Tellex et al., 2003), question typing (Hovy et al., 2001)

and semantic parsing (Echihabi and Marcu, 2003; Xu, Licuanan, and Weischedel,

2003). In statistical ranking of relevant passages, to supplement the sparseness

in a corpus, current systems also exploit knowledge from external resources, such

as WordNet (Harabagiu et al., 2000) and the Web (Brill et al., 2001). Given

the statistical techniques employed, the techniques focus on lexical and named

entity matching with question terms. As such, it is often difficult for existing QA

systems to find answers as they share few words in common with the question.

To circumvent this problem, recent work attempts to map answer sentences to

questions in other spaces, such as lexico-syntactic patterns. For instance, IBM

and ISI have systems that map questions and answer sentences into parse trees

and surface patterns (Ravichandran and Hovy, 2002). Echihabi and Marcu (2003)

adopted noisy-channel approach from machine translation to align questions and

answer sentences based on a trained model.

While current QA systems have shown great success in TREC evaluations, I

have identified two weaknesses of these systems that should be addressed to enhance

the performance:

3

1. Not target-aware – Most current QA systems deal with isolated questions

without considering the focus of the questions. Note that I refer to the focus

here as the search target mainly concerned by user questions. For instance,

if a user submits questions about “Aaron Copland”, it would be helpful if he

or she has some background knowledge about the target. The background

knowledge of the target could serve as the context for other questions. Within

the context, users could ask questions in a more manifest way and thus more

complete and precise answers are expected to obtain. I believe a desirable

QA system should be aware of the target of the input questions and be able

to help the user build up the context by providing a profile for the search

target.

2. Lack of flexibility in matching – While there has been work on semantic

matching of words (e.g. via WordNet) beyond exact lexical match, there lacks

work addressing flexible matching in other spaces, such as pattern matching.

Employing other syntactic or semantic features, like textual patterns or se-

mantic relations, reinforces the precise search for answers. However, rigid

match often fares poorly due to errors in other tools and variations in natural

language texts.

To address these problems, I have proposed an integrated question answering system

that is supposed to deal with factual questions about a given target and have

implemented two key components for the system. One component, which is called

the definitional question answering system, analyzes the target and returns

a summarized profile for that target. The profile could serve as a definition to

help the user build up the context for his or her follow-up questions regarding

the target. The other component, which is the factoid question answering

system, allows the user to ask specific questions about the target. Within this

framework, I focus my work on retrieval of accurate answer sentences for definition

4

and factoid questions. A main hypothesis here is that once the right answer sentence

is retrieved, it is likely to contain the answer. I will incorporate techniques that

go beyond word-based metrics to boost the precision and completeness of sentence

retrieval. I believe that the key to a QA system is to find appropriate similarity

metrics between the question and the sentences that contain the answer.

1.0.1 Problem Statement

In this thesis, I hypothesize that flexible matching for syntactic and semantic fea-

tures can improve the performance of sentence retrieval for question answering. I

examine statistical similarity metrics to realize flexible matching, which I term as

soft matching.

Hypothesis: Soft matching of syntactic and semantic features beyond lexical fea-

tures can improve the performance of sentence retrieval for answering defi-

nition and factoid questions as compared to systems that employ only exact

match of such features.

To this end, I have devised two soft matching schemes that are used in the

sentence retrieval modules of my QA system.

1.1 Soft Matching Schemes

In sentence retrieval, it is crucial to measure how similar a candidate sentence and

the query are in terms of different features. In addition to lexical features, one

may draw on other features, such as patterns represented by token sequences and

relations between words, to capture the similarity. In contrast to exact match

of such features, I propose soft matching, which allows approximate match and

embodies the similarity measure as the degree of match in terms of certain features.

5

I introduce two schemes of soft matching in this thesis – one based on one anchor

and the other based on a pair of anchors or multiple anchors. I define the elements

in the candidate sentence which determine the boundary of the unit to be matched

as anchors. For instance, to match definition patterns for a certain target, the

target is considered as an anchor. Next, I illustrate the two soft matching schemes:

One Anchor Soft matching for one anchor is represented as:

Given t−L, . . . , t−2, t−1 < Anchor > t1, t2, . . . , tL

calculate Degreesoft−match(t−L, . . . , t−2, t−1) + DegreeSoft−Match(t1, t2, . . . , tL)

where the length of the matching unit is L and ti is the ith feature in the

matching unit. The soft matching is performed on both feature sequences left

and right to < Anchor > and the match degrees are combined.

Pair of Anchors Soft matching for a pair of anchors is represented as:

Given < Anchor1 > t1, t2, . . . , tL < Anchor2 >

calculate DegreeSoft−Match(t1, t2, . . . , tL)

The soft matching is conducted on the matching unit between the two an-

chors. Multiple anchors can be treated as multiple pairs, and thus are only

an extension of the case with two anchors.

1.2 The Integrated QA System

To date, most QA systems deal with ad-hoc questions - input questions are as-

sumed to be unrelated. It is natural for users to pose a question and get an answer

without being aware of the context of his or her target. However, for advanced

users such as professional information analysts, it is rather difficult to grasp really

relevant information about a target by asking such ad-hoc questions. In contrast,

an analyst prefers to collecting information on a target in a more structured way.

6

Imagine such a scenario: While reading news papers, an analyst encounters the

name of a terrorist that interests him or her. Without much clue about the terror-

ist, she first wants to know all the important facets about that person – e.g., origin,

education background, activities performed, etc. The analyst may not want to ask

many questions to retrieve information about every aspect of that person. Rather,

the system should be able provide a summary of the information as a profile. The

system learns and builds the context of questions that will retrieve information nec-

essary for the construction of the profile. In the next step, the analyst may come up

with some specific questions after reading the profile. She may consult the system

for answers on these specific questions, which are about the terrorist. The system

should be capable of searching for answers from the relevant information obtained

in the first step. In other words, the QA system should be able to perform two

classes of tasks (Moldovan et al., 2003) – fusing answers from different documents

and answering factual questions.

To achieve this goal, an integrated QA system for given targets is needed.

Recently, the National Institute of Science and Technology (NIST) in the United

States has started to address this goal in its TREC guidelines. The TREC QA

task includes a number of targets and the participating systems are required to

answer specific questions about each target, as well as to find all other information

related to the targets (Voorhees, 2004; Voorhees and Dang, 2005). In this thesis,

I present key components for building such an integrated QA system to address

this problem. The QA system, which takes a given target as a query, analyzes the

target and generates a profile for this target as the context, within which specific

questions about it can be precisely answered. I will not present all required modules,

nor evaluate the integrated QA system as a whole. I focus my work on the two

key modules of definition extraction and factoid question answering, and evaluate

them component-wise.

7

The core components leverage lexico-syntactic patterns and semantic rela-

tions to identify appropriate sentences relevant to a target (see Figure 3.1). Besides

the module for sentence retrieval, other modules in the system also impact the fi-

nal output. These include technologies for question analysis, document retrieval,

anaphora resolution, etc. These other technologies are beyond the scope of this

thesis. I focus on dealing with open-domain questions with little domain-specific

knowledge. Interactive QA is also beyond the scope of my thesis.

I chose the news domain for question answering as there is a need for users

to get answers for timely questions which cannot be answered by other existing

knowledge sources. Furthermore, news is diverse in its content and constantly

changing. As such, it covers more questions than any other resources.

1.2.1 Soft Matching in the QA System

In Section 1.1, I sketched two soft matching schemes, which will be further detailed

in this thesis. I apply both schemes in my QA system – the one-anchor scheme on

soft matching of definition patterns; and the two-anchor scheme on soft matching

of dependency relations between words.

To retrieve definition sentences to construct the definition for the search

target, I employ textual definition pattern matching to identify definition sentences.

Since the definition patterns capture the contexts surrounding the search target in

the sentences, the search target is the only anchor to locate the matching units. As

such, I apply the one-anchor soft matching scheme to soft pattern matching.

In order to precisely obtain the answer sentence for a factoid question about a

target, I examine the similarity between the dependency relations between matched

question words as additional evidence for ranking candidate sentences. In this case,

the matching units are multiple relations between every pair of matched question

terms. Therefore, it is natural to apply the two-anchor scheme for soft relation

8

matching.

I employ different statistical models, which are discussed in Chapters 4, 5

and 6, to implement the soft matching schemes. The features in soft matching vary

according to different tasks. For pattern matching, the features are lexical words,

syntactic tags and punctuations, while for relation matching, the features are gram-

matical relations. It is worth pointing out that the soft matching schemes and the

corresponding statistical models are generic and can be applied to other scenarios

where one may find similar anchor matching schemes, provided that appropriate

matching features are used.

1.3 Contributions

In this thesis, I make the following contributions:

Lexico-Syntactic Pattern Matching. I present formal statistical models for re-

alizing soft lexico-syntactic pattern learning and matching. Moreover, I show

how to generalize sentences into abstract pattern instances, which facilitate

more generic matching. I evaluate the effectiveness of the soft pattern match-

ing models on definition sentence retrieval. The generic soft pattern models

can be extended to other applications that utilize textual patterns.

Passage Retrieval. I show how dependency relations between matched question

terms help improve the performance of passage retrieval in a QA system. In

particular, I adapt dependency relation matching to my soft matching scheme

and make use of a statistical translation model to calculate the similarity

between multiple relations. Such a technique is also applicable to improving

passage retrieval in other retrieval systems.

Question Answering. I present two key components to build a QA system –

one component can present the definition (or profile) to the search target

9

and the other answers subsequent specific questions about the target. Such

an integrated QA system does not answer questions on an ad-hoc basis. In

contrast, it helps the user better understand the target and make the search

process more manageable. It is more adaptable to the use of the information

system by the advanced users.

1.4 Guide to This Thesis

In Chapter 2, I give the background for question answering. I will review existing

work for definitional and factoid QA, as well as the main techniques they employ.

Specifically, I first review the work on lexico-syntactic pattern rule induction in

information extraction as it is closely related to definition pattern matching in def-

initional QA. Definition pattern matching is formally identical to pattern matching

in information extraction. My soft pattern models are alternative to rule induc-

tion techniques. In presenting existing work in definitional QA, I also show related

work in domain-specific definition generation and query-dependent summarization.

I then review the work in passage retrieval for factoid QA.

In Chapter 3, I present the architecture of the QA system. In addition, I

discuss in detail the basic modules that are not covered in later chapters. I leave

the modules that embed soft matching technologies in the next three chapters.

In Chapter 4, I show the basic soft pattern model. This model is simple

and ad-hoc but embodies the fundamental idea of soft pattern matching. In this

section, I also show how to generalize definition sentences and test sentences into

pattern instances, which are represented in lexical and syntactic token sequences

and are abstract of the sentences. The generalized pattern instances are the basis

for soft matching.

In Chapter 5, I present two generic soft pattern models which are derived

from formal statistical models. These two models are the formalization of the

10

previous simple model and obtain better performance in evaluations. I will present

evaluation results by using these two formal models, comparing with that obtained

by the basic soft matching model and hard matching rules.

While the previous two chapters are about soft pattern matching in defini-

tional QA, in Chapter 6, I show the soft matching technique for dependency rela-

tions in factoid QA passage retrieval. I present the statistical translation model for

calculating the similarity between relation paths (multiple relations) in the parsing

trees.

I conclude the thesis in Chapter 7. I will summarize the contributions and

point out the limitations of this work. I present possible future work in the end of

the thesis.

11

Chapter 2

Background

2.1 Overview of Question Answering

Different from traditional information retrieval (Salton and McGill, 1984), which

gets a list of relevant documents for a given query, QA systems aim to answer a

natural language question with the most exact answer. For instance, the question

“Who invented the paper clip?” in TREC should be answered by the name of

the inventor. Question answering tasks in TREC have evolved in the past years.

At the beginning, TREC QA track had only simple factoid questions like the above

example and requires the systems to answer the questions by a text fragment of

50 bytes. Such questions are usually sufficiently answered by a word or a phrase.

In recent TREC, the guideline requires the system to return the exact answer

to factoid questions, instead of snippets. From 2003 (Voorhees, 2003b), TREC

has introduced two new separate types of questions - list questions and definition

questions. The list question answering task requires the systems to assemble the

answers to a list question, such as “What Chinese provinces have a McDonalds

restaurant?”, from multiple supporting documents. The answer should be list of

factoid answers to the question. The definition questions are answered by a set of

12

text fragments or sentences, which provide an extended definition to the target,

such as “Who is Colin Powell?”. Instead of being correct or not, the list and

definition questions are evaluated based on their precision and recall on the facts

to answer the questions.

From TREC-2004, the question answering task integrated definition factoid

and list questions into different series, where each series had a target associated

with it. The systems are required to give definition to each target and answer the

target-related factoid and list questions. I illustrate a question series in Figure 2.1.

As is seen in Figure 2.1, each question in a series asked for some information about

the target. In addition, the final question in each series was an explicit “other”

question, which was to be interpreted as “Tell me other interesting things about

this target I don’t know enough to ask directly”. This last question is roughly

equivalent to the definition questions in previous TREC tasks. Each series is a

(limited) abstraction of an information dialog in which the user is trying to define

the target. The target and earlier questions in a series provide the context for the

current question. The construction of TREC question series is very similar to the

working process of my proposed QA system, which is able to present the definition

of the search target and answer subsequent factoid questions. As such, I will use

TREC data set as the evaluation set in my experiments.

22 Franz Kafka

22.1 FACTOID Where was Franz Kafka born?

22.2 FACTOID When was he born?

22.3 FACTOID What is his ethnic background?

22.4 LIST What books did he author?

22.5 OTHER

Figure 2.1: A Sample Series in TREC-2004

13

A typical open domain QA system consists of three modules to perform the

information seeking process (Harabagiu, Maiorano, and Pasca, 2003):

1. Question Processing - The question processing module captures the se-

mantics embedded in a natural language question and is able to recognize the

expected answer type. For instance, given the question “Who invented the

paper clip?”, the expected answer type is person. In addition, the key-

words in the question are utilized to retrieve documents and passages where

the possible answer may lie.

2. Document and Passage Processing - The document processing module

indexes and retrieves the documents in the data collection based on the key-

words given in the questions. QA systems break the retrieved documents

down to passages and select the most relevant passages for answer process-

ing.

3. Answer Processing - The answer processing module completes the task of

finding the exact answer from the relevant passages. It compares the seman-

tics of the answer against those embedded in the question.

In my QA system, as my goal is to obtain sentence-level answers for the

questions, I will not discuss the question process module and the answer processing

module. The reason is two-fold: (1) The input to my QA system is a search

target and a series of factoid questions about the target. It is not necessary to

perform question analysis to search for definitions for the target. (2) As for the

factoid questions, I am more interested in improving the passage retrieval process

by examining the semantics in both the question and the relevant sentences. As

such, question processing could be useful but is not worth a dedicated discussion.

In the rest of this chapter, I give background knowledge in definitional QA

and passage retrieval for factoid QA. Before coming to the two types of QA, I will

14

first review lexico-syntactic pattern induction because it is closely related to my

soft pattern matching technique for definitional QA.

2.2 Lexico-Syntactic Pattern Induction

As soft pattern construction and matching comprise a large portion of my work, pre-

vious work in lexico-syntactic pattern (or rule) induction is closely related because

it generalizes rules represented by regular expressions from annotated training text.

Pattern learning algorithms are categorized into pattern generalization on free text

and structured documents, as well as automatic wrapper induction (see (Muslea,

1999) for a survey).

Many pattern rule inductive learning systems have been developed for in-

formation extraction (IE) on free texts and semi-structured texts. AutoSlog by

Riloff (1993) is an early pattern learning system. It employs a set of initial heuris-

tics to identify the interesting part of a given sentence. An extraction pattern is

created when a sentence is initiated by any of the heuristics and the pattern con-

sists of the constraint of the matched heuristic and the specific words. For instance,

“<victim> was kidnapped” is a generated rule by Autoslog for the terrorism do-

main. AutoSlog-TS (Riloff, 1996) extends Autoslog by adopting a means of exhaus-

tive pattern generation on unannotated text, which is only pre-classified according

to scenarios. Autoslog-TS generates all possible patterns around each noun phrase

in the training corpus and employs the popularity score (or relevance score) of each

pattern to filter out those low-frequency patterns. WHISK (Soderland, 1999) in-

duces multi-slot rules from a training corpus top-down. It was designed to handle

text styles ranging from highly structured text to free text. WHISK performs rule

induction starting from a randomly selected seed instance. It grows a rule from

the seed by starting with an empty rule. With more training instances, the slots

of the rule become more specific with words or tokens. Generated rules with more

15

errors than the threshold on the training data are discarded. (LP)2 (Ciravegna,

2001) is a covering algorithm for adaptive IE systems that induce symbolic rules.

In (LP)2, the training is performed in two steps: first, a set of tagging rules is

learned to identify the boundaries of slots; next, additional rules are induced to

correct mistakes in the first step of tagging. Another recent work in rule induction

is by Xiao et al. (2003), namely, the GRID system. GRID differs from the previous

work in that it examines the global statistics of the tokens in each slot to select the

tokens to specialize the slots. The selected tokens should minimize the incurred

errors and occur frequently in certain slots. As such, GRID performs more efficient

rule induction.

From the above work, we see that IE systems tasks rely on a set of textual

rules which are generalized from training examples. These algorithms generalize

the context around the target of interest, in terms of syntax and semantics, and ab-

stract contextual constraints. A pattern is matched if each surrounding word of the

extraction candidate matches the pattern’s corresponding constraint. As such, I say

that the pattern matching by the generalized rules is hard matching, as it requires

an exact, slot-by-slot match. A pattern is not matched if any slot is not matched.

Such hard matching often fails when there is mis-match between generalized rules

and unseen text due to great variance in natural languages. To circumvent this

problem, I will introduce soft pattern matching models in Chapters 4 and 5.

Similar to my soft matching idea, Nahm and Mooney (2001) proposed learn-

ing soft matching rules from texts by combining rule-based and instance-based

learning. Words in each slot are generalized by traditional rule induction tech-

niques and test instances are matched to the rules by their cosine similarities.

Likewise, Snowball (Agichtein et al., 2001) system tries to extract relations, such

as the headquarters of companies, from large-scale data on the Web using textual

rules that are approximately matched by calculating cosine similarity of the test in-

16

stances with the rules. While their work embraced the idea of statistical matching,

it simplifies the task by performing only lexical matching in slots. Different from

their work, my soft pattern matching models consider lexical tokens alongside syn-

tactic features and adopt a probabilistic framework that combines slot content and

sequential fidelity in computing the degree of pattern match. In addition, my goal

is to propose generic pattern matching models that can be extended to question

answering where textual patterns are employed.

2.3 Definitional Question Answering

I categorize the definition extraction systems into two groups – domain-specific

definition extraction systems and open-domain definition extraction (or definitional

QA) systems. I classify my soft pattern based system in the latter category.

TREC has had a separate competition track on definitional question answer-

ing since 2003. Entrants’ systems are evaluated over a corpus of over 1 million news

articles from various news agencies. The definitional QA task requires the partic-

ipating systems to extract and return interesting information about a particular

person or term, such as “Who is Vlad the Impaler?” or “What is a prion?”

The evaluation of definition questions is based on a manual check of how many an-

swer nuggets (determined by the human assessor) are covered by system responses.

Partial credit for answers (Voorhees, 2003a) can be given. Figure 2.2 illustrates an

example question from TREC and its corresponding answer nuggets.

TREC assesses definitional QA systems with respect to content precision and

recall and does not attempt to judge definitions with respect to fluency or coherence.

This is in line with the focus on my work in retrieving relevant definition sentences

but differs from the general task of definition generation in which such stylistic

criteria matter. As seen in Figure 2.2, content nuggets are categorized into vital

pieces of information and okay ones that would be desirable to include in such

17

Qid 1933: Who is Vlad the Impaler?

1933 1 okay 16th century warrior prince

1933 2 vital Inspiration for Bram Stoker 1897 novel "Dracula"

1933 3 okay Buried in medieval monastery on islet in Lake Snagov

1933 4 vital Impaled opponents on stakes when they crossed him

1933 5 okay Lived in Transylvania (Romania)

1933 6 okay Fought Turks

1933 7 okay Called "Prince of Darkness"

1933 8 okay Possibly related to British royalty

Figure 2.2: A Sample Definition Question and Answer Nuggets from TREC

extended definitions.

In early TREC, definition questions are mixed with factoid questions and

are required to be answered by a phrase as short definition. As such, the systems,

such as the FALCON system (Harabagiu et al., 2000) and IBM’s system (Prager,

Radev, and Czuba, 2001), employed simple, manually constructed patterns to ex-

tract proper phrases or hypernyms from WordNet to define the search target.

However, extended definitions are thought to be more useful to users as they

incorporate more description and context of the target term, which may better

facilitate comprehension. Recent definitional QA systems have applied more so-

phisticated analyses to retrieve such descriptive sentences. Table 2.1 summarizes

the techniques employed by some representative TREC systems that perform well

in the official evaluations. An exhaustive listing of techniques on a per system basis

is presented in Table A.1 of Appendix A.

From the table, it is clear that definitional QA systems mainly rely on two

types of information to identify definitions: definitional linguistic constructs and

statistical ranking. Let’s examine these two components in more detail.

18

Table 2.1: Summary of Techniques Employed by TREC Systems
TREC Sys-

tems

Definitional Linguistic Constructs Statistical Ranking

Surface

Patterns
a

Patterns

on Parsing

Trees
b

Appositives

& Copu-

las
c

Relative

Clauses
d

Predicates

& Verb

Phrases
e

Centroid

Vector or

Profile
f

Mining Ex-

ternal Defi-

nitions
g

NUSh (Yang et al.,

2003)

× × × ×

BBN (Xu, Licuanan,

and Weischedel, 2003;

Xu, Weischedel, and

Licuanan, 2004)

× × × × × × ×

Columbia (Blair-

Goldensohn,

McKeown, and

Schlaikjer, 2003)

× × × ×

LCC (Harabagiu et

al., 2003)

× ×

MIT (Katz et al.,

2004)

× × × × × ×

IBM PIQUANT (Chu-

Carroll et al., 2004;

Prager et al., 2003)

× × × × ×

Amsterdam (Ahn et

al., 2004)

× × × ×

Sheffield (Gaizauskas

et al., 2004)

× × × × ×

Korea University

(Han et al., 2004)

× × × × × ×

aLexico-syntactic surface patterns, such as “<TARGET> , the $NNP”.
bPattern rules for extracting specified constructs from syntactic parsing trees for sentences.
cAppositives – e.g. “Gunter Blobel, a cellular and molecular biologist, . . .”

Copulas – e.g. “Stem cell is a cell from which other types of cells can develop.”
de.g. “. . .Gunter Blobel who won the Nobel Prize for . . .”
ePredicates and verb phrases are mainly for describing a person or special relations. They are

identified by a set of specialized verbs, which are often coupled with people’s behaviors, such as
“born” and “vote”.

fTo construct a centroid vector or profile for each target and use that centroid vector to rank the
relevance of candidate sentences or constructs. The centroid vector contains a set of highly relevant
words to the target, which could be selected by frequent words in external definitions/biographies
or extracted candidate sentences or constructs.

gTo have other definitions obtained from definitional web sites, such as online biographies and
encyclopedias. The relevant words to the target in the corpus are augmented with weights if they
also appear in external definitions.

hThis system is used in TREC-12, before I proposed the soft pattern models.

19

2.3.1 Definitional Linguistic Constructs

All systems try to identify specific definitional linguistic constructs that mark def-

initional sentences. Examples of such definitional linguistic constructs include ap-

positives and copulas. Appositives, such as “Gunter Blobel, a cellular and

molecular biologist, ...”, are mostly used in news to introduce a person or a

new term. To recognize such linguistic constructs, the systems employ pre-compiled

patterns, either on surface text(e.g., BBN, MIT and LCC) or on syntactic parsing

trees (e.g., Amsterdam, Columbia and Korea University). Definition patterns can

also be defined based on specific question patterns and entity classes (Harabagiu et

al., 2005). Since surface patterns are more adaptable and easier to deploy without

the requirement of task-specific parsing, I discuss only surface textual patterns that

are represented in lexical/syntactic tokens. I list some definition patterns in Table

5.2. According to component evaluations (Xu, Weischedel, and Licuanan, 2004;

Cui et al., 2004a), definition pattern matching is the most important component in

a definitional QA system.

It is worth noting that the patterns employed by current definitional QA

systems are equivalent to those that have been used by information extraction (IE)

systems, as stated in the previous section. Virtually all definitional QA systems

that employ manual patterns (e.g., (Harabagiu et al., 2003; Hildebrandt, Katz, and

Lin, 2004)) or automatic rule induction algorithms(e.g., (Peng et al., 2005; Cui et

al., 2004a)) are hard pattern matching systems, as their patterns are equivalent to

regular expressions and perform slot-by-slot matching.

I identify two drawbacks of using such generalized pattern rules for extracting

definitions:

1. Inflexibility in matching: As stated, hard matching rules fail to match

when there are even small variations between the training instances and the

test text, such as extra or missing tokens. Such variations in natural language

20

text are common in extended definitional sentences and are a hallmark of

fluent, well-crafted articles. Similar problems occur in information extraction,

but are usually more limited as IE tends to extract domain-specific and task-

specific information.

2. Inconsistent weighting of patterns: Most systems use statistical metrics

to rank the importance of retrieved constructs, but treat each definitional pat-

tern with the same level of importance. However, different definition patterns

should be weighted differently. For instance, appositives are the most popular

syntactic pattern for definitions, and thus should be weighted heavily. Many

systems lack a consistent method to determine the importance of the various

definition patterns. The frequency of each pattern can then be utilized when

ranking extracted definition candidates.

To circumvent the above problems, I proposed an alternate pattern gener-

ation and matching technique, soft pattern matching, for definition sentence

identification (Cui, Kan, and Chua, 2004; Cui, Kan, and Chua, 2005). Different

from current definition patterns, soft pattern models learn holistic definition pat-

terns from all training instances and assign weights to different pattern instances

according to their distributions in the training data. More importantly, it does not

treat pattern matching simply as a binary decision, but allows partial matching by

calculating a generative degree-of-match probability between the test instance and

the set of training instances.

The definition of soft patterns encompasses several existing approaches to in-

formation extraction. Several graphical models for IE can be viewed as soft pattern

matching in this framework. Skounakis et al. (2003) applied hierarchical HMMs

to the task of extracting binary relations in biomedical texts. They constructed

two HMMs to represent words and phrases, which are two levels of emission units.

Earlier work by McCallum et al. (2000) demonstrates the application of Maximum

21

Entropy Markov Model (MEMM) to segmentation and extraction of FAQs from

web documents. These variations of HMMs also model pattern matching as token

sequence generation and are able to deal with variations in test instances. How-

ever, they cannot be applied to definition pattern matching directly because the

topologies they employ are task-specific.

In this work, I focus my discussion on lexico-syntactic patterns used in def-

initional QA systems. There are other patterns beyond textual patterns. For

instance, in TREC 2005, LCC (Harabagiu et al., 2005) employ another two types

of pre-compiled patterns - question patterns and entity classes. Question patterns

comprise a list of factoid questions which are considered essential nuggets according

to the type of the target. Entity classes indicate relevant named entities to the tar-

get in the corpus. These two types of patterns could be considered as pre-defined

templates for searching for definitions for different targets. Since such template-like

patterns need intense manual labor and expertise to construct, I do not consider

them in this thesis.

2.3.2 Statistical Ranking

The second common component in many definitional QA systems is statistical

ranking to weight the relevance of extracted definition candidates. A commonly-

employed method is to construct a centroid vector, or profile, for the search target

and rank the definition candidates by calculating the similarity between the can-

didates and the centroid vector. Centroid words are relevant, non-trivial words

correlated with the search target. They are selected from the extracted candidates

by measuring their co-occurrence with the target or by measuring their corpus

frequency in a large set of definitions or biographies available from an external

resource.

My centroid ranking method, discussed in Section 3.1.1, is based on the

22

former technique but also generalizes the lexical tokens into syntactic tags to create

evidence for more generic patterns. I will discuss how to replace centroid words with

their syntactic tags in Section 4.1.

TREC systems (e.g., (Ahn et al., 2004)) also utilize definitions extracted

from online encyclopedia and biographical web sites, which provide a much larger

and cleaner resource for definitions. External definitions are usually utilized to

reinforce the definition candidates from the corpus. The weights of candidates with

higher amounts of overlap with the external definitions are thus augmented. I will

discuss the use of external definitions in my system in Section 3.1.1.1. However, I

will not discuss in detail the evaluations on the use of external knowledge as my

focus is on soft matching for QA. I will summarize the observations on experiments

with external resources in Section 4.5.6.

2.3.3 Related Work

In this section, I present the existing work that is related to definition extraction.

As TREC QA task is for open domain QA, I first review the complementary work

in domain-specific definition extraction. Then, I discuss query-dependent summa-

rization, which is pertinent to definition generation because the latter summarizes

all relevant information about a target.

2.3.3.1 Domain-Specific Definition Extraction

There has been much work on the extraction of definitions for terms from structured

or unstructured text. Identifying a canonical form for abbreviations and acronyms

is perhaps the simplest form of definition extraction. Schwartz and Hearst (2003)

presented an algorithm that searches definition for acronyms in biomedical text.

The algorithm searches for the form “short form (long form)” or “long form (short

form)” and examines whether each letter in the short term comes from each word

23

in the long form. Such definitions for abbreviations are relatively simple to identify,

and thus it is sufficient to apply only string processing techniques. Zahariev (2003)

introduced dynamic programming in matching definitions to handle more compli-

cated acronyms, which may have multiple letters from a single word in the expansion

form.

DEFINDER (Klavans and Muresan, 2001) is part of a digital library project

and aims to provide readable definitions of medical terms to patients. While de-

veloped for a specific domain, the two primary techniques it employed are largely

domain-independent: (1) Shallow text pattern analysis – patterns such as “is called”

and “is the term used to describe” are utilized to identify definitions. (2) Grammar

analysis for recognizing more complex structures like appositive and apposition.

In their evaluation, Klavans and Muresan (2001) showed that online medical dic-

tionaries have lower coverage compared to the results automatically extracted by

DEFINDER (the completeness of online dictionaries varies from 22% − 76% com-

pared to the extracted definitions). Their results show that automatic definition

extraction systems complement manually-constructed dictionaries. I believe that

the coverage of standard authoritative sources is lower in the open-domain context

as new terms are coined frequently. As such, developing automatic systems for

definition generation is indispensable.

As both the accuracy of manually-constructed definitions and the coverage of

automatically-extracted definitions are positive qualities, researchers often combine

both types of resources. For instance, in (Muresan et al., 2003), glossaries iden-

tified from existing web sites and definitions extracted from unstructured text by

DEFINDER are integrated to determine conceptual connections between different

term databases.

Schiffman et al.’s system (2001) produces biographical summaries (i.e. to

answer “who is” questions). They combined a data-driven statistical method with

24

machine learned rules to generate definitions. The biographical information is iden-

tified by appositives and special predicates lead by verbs that are associated with

typical actions of people. Likewise, Sarner and Carberry (1988) identified fourteen

distinct predicates that are related to definition content, such as those associated

with identification, properties and components. The generated definitions were

placed in the context of cooperative dialogs. Due to the specific scenario of the use

of their system, they weighted predicates to determine which are involved in the

definition based on three models: the model of the user’s domain knowledge, the

model of the user’s underlying plan and goal and that of how receptive the user is

to various information.

More recently, the ubiquity of the Web has generated interest on finding

definitions. Liu et al. (2003) proposed mining topic specific definitions from the

Web. The basic idea is to utilize a set of hand-crafted rules to find definition

sentences on web pages. They also tried to utilize the structure of web pages to

identify sub-topics of each main topic, which could be considered part of extended

definition of the main topic.

The above systems automatically extract definitions from plain text or web

pages. However, they are domain-specific, i.e., working on only a specific category of

terms or on a particular corpus. In contrast, my aim is to present a comprehensive

definition generation system that works on news articles and is able to extract

definitions for a wide spectrum of terms.

2.3.3.2 Query-Dependent Summarization

Another existing work that is closely to my work in definitional QA lies in query-

dependent summarization because definitional QA can be considered as the process

of sentence extraction and summarization based on a specific query, i.e., the target.

Goldstein et al. (1999) presented Maximal Marginal Relevance (MMR) on

25

multi-document summarization. The basic idea is to choose sentences that are

closely correlated (or similar) to the query and are different from the sentences

that are already in the summary. Their statistical model of sentence selection has

been adopted in my sentence summarization module for generating definitions. My

variation of MMR will be presented in Section 3.1.2. White et al. (2001) applied an

information extraction system to a summarization system based on scenarios, like

natural disaster. The IE system extracts specific pieces of information and let the

summarization system put them into template-based summaries. The extracted in-

formation was also utilized to supplement the scenario templates for summarization.

Radev and McKeown (1998) presented a system that can produce a summary of a

given event from multiple news sources. In addition to scenario template-based sen-

tence extraction, they incorporated complex techniques in discourse planning and

language generation to ensure the coherence of the generated summary. Tombros

and Sanderson (1998) applied a summarization system to an information retrieval

system such that the users obtain a summary of each retrieved document. The

summary helps users locate the target documents more quickly. They relied on the

article title, the location of sentences, important terms in the documents and terms

biased towards the query to determine which sentences to construct the summary.

However, query-dependent summarization does not apply to definitional QA

because the former summarizes all relevant documents while the latter requires the

system to extract definition sentences on the target and then summarize them.

In other words, definitional QA capitalizes more on the identification of definition

sentences.

26

2.4 Passage Retrieval for Factoid Question An-

swering

Passage retrieval has been studied in depth in information retrieval (Kaszkiel and

Zobel, 1997). It aims to search for more precise and compact text excerpts in re-

sponse to users’ queries, rather than providing whole documents. Passage retrieval

is a crucial component in factoid question answering (QA) systems. To answer a

specific factoid question about Louvre, e.g., “When was the Louvre transformed

into a museum?” a factoid QA system employs a pipeline structure that consists

of several modules to get the short and precise answer: (1) locating the relevant

documents, (2) retrieving passages that may contain the answer, and (3) pinpoint-

ing the exact answer from candidate passages. I focus on Step 2 because passage

retrieval greatly affects the performance of a factoid QA system. If a passage re-

trieval module returns too many irrelevant passages, the answer extraction module

is likely to fail to pinpoint the correct answer due to too much noise. Moreover,

a passage can sufficiently answer a factoid question. Lin et al. (2003) showed that

users prefer passages to phrase-long answers because passages provide sufficient

context for them to understand the answer.

The simplest passage retrieval method, employed by MITRE (Light et al.,

2001), counts the number of matched question terms in a passage. Other pas-

sage retrieval systems, such as those employed in SiteQ (Lee et al., 2001) and

IBM (Prager et al., 2003), are density-based as they take into account the dis-

tances between question terms in the candidate passages. IBM’s passage retrieval

system takes into account WordNet synonyms in addition to word matching. In

addition, the system considers the “dispersion measure,” which counts the matched

words’ distance in the passage, and “cluster words,” which examine the adjacent

words in both the query and the passage. It linearly combines all the measures to

27

weight the passages. SiteQ weights the query terms based on their part-of-speech

tags and ranks the passages according to the sum of the weights of matched words,

as well as their normalized distance. Hovy et al. (2001) presented the ISI system,

which weighs different lexical features including query terms, proper names and

stemmed words, to rank the passages.

Tellex et al. (2003) conducted a thorough quantitative component evaluation

for passage retrieval algorithms employed by current QA systems. The authors

concluded that neglecting crucial relations between words is a major source of false

positives for current lexical matching based retrieval techniques. The reason is that

many irrelevant passages share the same question terms with correct ones, but the

relations between these terms are different from those in the question. We illustrate

this by a sample question and some candidate sentences in Figure 2.3, where only

sentence S1 contains the correct answer. The other three sentences share many

question terms (in italics) but are incorrect.

<Question> What percent of the nation’s cheese does Wisconsin produce?
<S1>(correct) In Wisconsin, where farmers produce roughly 28 percent of
the nation’s cheese, the outrage is palpable.
<S2>(Incorrect) . . . the number of consumers who mention California when
asked about cheese has risen by 14 percent, while the number specifying Wis-
consin has dropped 16 percent.
<S3>(Incorrect) The wry “It’s the Cheese” ads, which attribute California’s
allure to its cheese and indulge in an occasional dig at the Wisconsin stuff”
. . . sales of cheese in California grew three times as fast as sales in the nation
as a whole 3.7 percent compared to 1.2 percent, . . .

<S4>(Incorrect) Awareness of the Real California Cheese logo, which ap-
pears on about 95 percent of California cheeses, has also made strides.

Figure 2.3: Sample Question and Candidate Passages Illustrate that lexical match-
ing can lead to incorrect answers.

Figure 2.3 shows that a passage retrieval system that relies only on lexical

level matching and considers each question term an independent token may fare

28

poorly in real applications. Next, I will review some previous work that tried to

incorporate term relationship in the retrieval phase.

2.4.1 Attempts in Previous Work

To extract precise answers, Harabagiu et al. (2003) applied a theorem prover that

conducts abductive reasoning over WordNet to derive semantic relationship be-

tween words. Other techniques attempt to approximate such relations between

words statistically. For instance, some language modeling approaches capture sim-

ple dependency relations by using bigrams (e.g., (Song and Croft, 1999)). But these

models only capture dependency relations between adjacent words.

To take into account relations between question terms, previous work has ap-

plied grammatical or statistical co-occurrence based relations. PiQASso (Attardi

et al., 2001) employed a dependency parser and extracts the answer from a candi-

date sentence if the relations reflected in the question are matched in that sentence.

However, that system does not perform well due to low recall resulting from match-

ing relations in only the top ranked sentences. To remedy the recall problem, Katz

and Lin (2003) indexed and matched specific relations (e.g., subject-verb-object)

over an entire QA corpus. However, they performed their evaluation on only a hand-

ful of manually constructed questions instead of the community-standard TREC

data.

Both the above systems select answers based on strict matching of depen-

dency relations. Strict matching is problematic when conducted on a large corpus

because the same relationship is often phrased differently in the parse trees of the

question and the answer. For instance, appositive relations can be rephrased using

other dependency relations - such as the whn (nominal wh-phrase) relation - in the

question. As such, strict matching of relations may fare poorly in recall, which is

an important consideration in passage retrieval. To address the problem brought

29

by rigid matching of relations, I propose to adopt soft matching of dependency rela-

tions between matched question terms to improve factoid QA passage retrieval (Cui

et al., 2005). I will discuss my soft relation matching in Chapter 6.

There are methods that model dependency relations statistically at the sur-

face level. For instance, Gao et al. (2004) proposed a language model that captures

dependency relations that are learned from training data. They proposed a sta-

tistical parsing model that captures dependency relations between words based on

the co-occurrences of words in the training data.

Instead of adopting such statistically determined relations, my proposed re-

lation matching method is based on grammatical dependency relations determined

by Minipar (Lin, 1998), a fast and robust dependency parser. The reason is three-

fold: (1) Different from information retrieval, we do not have a large amount of

QA data for training. Using relation matching based entirely on statistics could be

problematic due to sparse data. (2) QA questions are sentences, which enable us to

adopt a dependency parser to extract various types of dependency relations. Such

typed relations, which have more accurate meanings in expressing dependency re-

lationships, tend to be of higher differentiating capability in filtering out irrelevant

relations. (3) Unlike Gao et al., we seek to build a system with an off-the-shelf

parser so that the system and its results are easier to reproduce. Minipar is a free

research dependency parser that fulfills this requirement. Minipar has been used

in question answering (e.g., (Attardi et al., 2001)) in the past.

30

Chapter 3

Architecture of the Question

Answering System

In this chapter, I present the architecture of my QA system. In particular, I illus-

trate the subsystem of definitional QA. While I leave the core technologies of soft

matching in later chapters, I discuss other modules in the rest of this chapter.

I illustrate the overall architecture of my question answering system in Fig-

ure 3.1. This system takes a search target, e.g., “Aaron Copland”, as input and

retrieves a set of relevant documents. The sentences in the relevant documents are

utilized to produce the definition for the target and to answer specific questions

about the target. The core module of the system is the one for answer sentence

evaluation, which ranks definition sentences and answer sentences for specific ques-

tions. The ranked candidate answer sentences are then fed to the module of answer

extraction and summarization to produce the final answer.

In particular, the system performs the following steps to get the answers.

Document retrieval and sentence splitting: Given a search target, it

first takes the target as a query and feeds it into a standard document retrieval

system (Step (a)). The result is a set of relevant documents about the target.

31

Figure 3.1: Illustration of the Architecture of the Integrated QA System

The documents are then split into sentences in Step (b).

The retrieved relevant sentences are the basis for subsequent answer sentence

evaluation to get two types of answers: (1) definition sentences to construct

the definition for the target; and (2) answer sentences to answer the factoid

questions about the target.

Definition generation: The target-relevant sentences are fed into the def-

initional QA subsystem and are evaluated by: (c) statistical bag-of-words

ranking and (d) soft pattern matching to obtain definition sentences. The

32

statistical bag-of-words ranking can be reinforced by external resources of

definitions, such as the Web and WordNet. The definitional QA subsystem

includes another module (f) to perform answer summarization to summarize

the definition sentences into a definition. I will discuss the definitional QA

subsystem in the next section.

Factoid question answering: Given the specific factoid questions about

the target, the system employs (c) statistical bag-of-words ranking and (e)

soft dependency relation matching module to evaluate the candidate answer

sentences. In my system, I utilize sentences to answer the factoid questions,

and thus it does not include a module as answer extraction as in other QA

systems. I will discuss the module of soft dependency relation matching in

Chapter 6.

3.1 The Subsystem for Definitional QA

Figure 3.2 shows the architecture of the definitional QA subsystem, which is spe-

cialized from the architecture illustrated in Figure 3.1.

Given the target and a set of relevant sentences, the system executes the

following steps to construct an appropriate answer.

(1) Pattern instance generalization: I process the retrieved sentences

into pattern instances, on which soft definition pattern generation and match-

ing are performed. I first replace the words that are specific to the search

targets with their general syntactic (POS or chunk) tags. Remaining words

are stemmed. I refer to these remaining lexical words and substituted general

syntactic tags as tokens. I then take the tokens surrounding the search target

as pattern instances. Figure 3.3 illustrates several sample pattern instances.

I will discuss in detail how to generalize pattern instances in Section 4.1.

33

Figure 3.2: Illustration of the Architecture of the Definitional QA Subsystem

BE$ discovered by NNP <TARGET> , DT$ NN ,

DT$ JJ <TARGET> , DT$ JJ NN

NNP , known as <TARGET> , BE$ be held

<TARGET> including NN in DT$

<TARGET> BE$ CD$ of DT$

Figure 3.3: Sample Pattern Instances Generated after Pre-processing

(2) Definition sentence ranking: The definition sentence retrieval mod-

ule ranks the input sentences based on how likely they are definition sentences

for the target. I rank definition sentences using two features: soft pattern

matching and centroid based ranking, which correspond to modules (c) and

(d) in Figure 3.1. To rank sentences, I combine the pattern matching and

bag-of-words ranking scores using simple linear weights.

(3) Definition sentence summarization: This module is exactly (f) in

Figure 3.1. It produces the final definition by selecting from top ranked

34

sentences and removing redundant sentences.

The key steps of soft pattern matching tasks of generalization (Step 1) and

ranking (Step 2) deserve an in-depth discussion and will be described in detail in the

following chapters. In the remainder of this section, I discuss bag-of-word relevance

approach (part of Step 2) and the final summarization sentence selection (Step 3).

3.1.1 Bag-of-Words Statistical Ranking of Relevance

In order to accumulate as many relevant sentences for the search target as possible,

I adopt centroid ranking, a bag-of-words statistical ranking technique for weighting

the relevance of a passages with respect to a given target. Centroid ranking has

been applied in summarization by Radev et al. (2004), and in definitional question

answering (Xu, Weischedel, and Licuanan, 2004; Cui, Kan, and Chua, 2004).

In multi-document summarization, Radev et al. (2004) select centroid words

by taking words that are most representative across documents by computing words’

global TF ×IDF weights. However, in the definitional QA context, centroid words

must bear very specific information describing the search target. As such, I adopt

a local relevance metric of words with respect to the search target based on their

co-occurrences with the search target. To assess the importance of each word in-

dependent of the search target, I use inverse document frequency (IDF)1. A word’s

local co-occurrence and the global IDF scores are combined to represent the rele-

vance of a word to the search target. The centrality of a word is then implemented

in our system by the following equation:

CentralityT (w) = − log
SF (T,w)

SF (T) × SF (w)
× IDF (w) (3.1)

1I use the statistics from Web Term Document Frequency and Rank site
(http://elib.cs.berkeley.edu/docfreq/) to approximate words’ IDF within the corpus.

35

where T denotes the search target and w is a candidate word occurring in the

context of T . SF (w1, w2) is the number of sentences that contain both w1 and w2

and SF (w) is the number of sentences that contain w. IDF (w) represents the IDF

value of w.

Given the input sentences, stopwords are removed and the remaining words

are stemmed. Centrality scores for the remaining stemmed words are calculated and

those words whose scores exceed a standard deviation over the mean are selected

as centroid words.

For each target, the system constructs a centroid vector from the resulting

centroid words. Similar to the work by Blair-Goldensohn et al. (2004) and Xu et

al. (2004), I then rank the candidate sentences by their similarity with the centroid

vector, using cosine similarity. Sentences that are highly ranked are considered

candidate definition sentences.

3.1.1.1 External Knowledge

In addition to corpus statistics, I also make use of external definitions for the search

targets to supplement centroid word selection. The main reason of utilizing external

definitions is that there are only a few occurrences in the corpus for some targets,

and thus it would be difficult to obtain reliable co-occurrence statistics for those

contextual words. In my system, I make use of two types of external knowledge:

task-independent (e.g., general Web search) and task-specific (e.g., definitions from

definitional sources). As for task-independent information, I attempt to obtain 200

snippets from Google for each search target. For task-specific information, I retrieve

the whole definition text from Answers.com2, which is an aggregation site for online

encyclopedias and biographies, for targets that have entries in these sites. While

there are many other Web sites that can be used as sources for definitions, I take

2http://www.answers.com

36

this site as a representative sample to examine their impact on the performance. I

augment the weight of those words that also occur in the text retrieved by Google

or the definitional Web resources:

Weight(w) =







Weightcentroid(w)×(1+log(SF (w)+1)) if w occurs in Google snippets

Weightcentroid(w)×(1+θ) if w occurs in the external definition

(3.2)

where Weightcentroid(w) denotes the centroid weight of the word w obtained by

Equation 3.1. SF (w) gives the number of snippets that contain the word w while θ

is a constant factor. I try different θ values (from 0.2 to 1.0) to optimize the system

and set it to 0.6 based on my experiments.

3.1.2 Definition Sentence Summarization

In Step 3, the system constructs the final definition from the ranked candidates

sentences. This is done by selecting the top-ranked sentences that suit the length

requirement and avoid including redundant content. I adopt a variation of Max-

imal Marginal Relevance (MMR) (Carbonell and Goldstein, 1998) to select non-

redundant sentences from the top list of sentences ranked by definition weighting

scores. The sentence selection algorithm is presented in Figure 3.4. Different from

the approach taken by Carbonell and Goldstein, who ranked all passages with

MMR, my method examines sentences in descending ranked order and stops when

the length of the definition is satisfied. This method takes advantage of the previous

ranking step and results in a more efficient algorithm.

37

Input: ranked sentences – Rank list of sentences in descending order of definitional scores
num selected sentences – Number of selected sentences in the output list

Output: selected sentences – List of selected definition sentences

Add the first sentence of ranked sentences to selected sentences

Remove that sentence from ranked sentences

N = 1
for each sentence stc in the remaining of ranked sentences

for each sentence sel stc in selected sentences

sim = CosineSimilarity(stc, sel stc)
record the maximum similarity max sim

if max sim < similarity threshold η

add stc into selected sentences and remove stc from ranked sentences

N = N + 1
if N > num selected sentences

return
end

Figure 3.4: Definition Sentence Summarization Algorithm

38

Chapter 4

A Simple Soft Pattern Matching

Model

In this chapter, I discuss a simple soft pattern matching model. It embodies the one-

anchor soft matching scheme as described in Section 1.1. As soft pattern matching

is used to identify definition sentences, it takes the target as the anchor and the lex-

ical/syntactic tokens around the target as matching units. This simple soft pattern

model embodies the two basic characteristics of soft matching of textual patterns:

namely, individual slot match degree and sequential fidelity. Such characteristics,

plus the process of generalizing definition sentences into pattern instances, lay the

foundations for the formal soft pattern models presented in the next chapter. I also

develop a group pseudo-relevance feedback (GPRF) method to automatically label

sentences for use in soft pattern generation.

I will present the method of soft pattern generalization and matching in the

next section. I then present a method of unsupervised learning of soft patterns by

GPRF. I complete the chapter with evaluations of soft pattern matching, compared

with both manually constructed and machine learned hard pattern matching.

39

4.1 Generalization of Pattern Instances

To ensure the generality of learned soft patterns, I first generalize the sentences into

abstract pattern instances. Given a group of potential definition sentences, the goal

is to learn the local contextual patterns surrounding the given search target. Here,

I focus on near window dependencies. This is because that definition sentences are

identified mainly by adjacent words and punctuations.

Definition (Pattern Instance) A pattern instance is a token sequence that con-

tains lexical/syntactic tokens left and right to the search target after perform-

ing transformation steps of tagging and chunking, selective substitution and

window cropping on a candidate sentence.

Figure 4.1: Illustration of Generalization of Pattern Instances

The process of generalizing pattern instances is illustrated in Figure 4.1. It

consists of three steps:

1. Tagging and chunking – The sentences are first processed with part-of-

speech (POS) tagging and chunking by a natural language tagger and chun-

ker1.

2. Selective substitution – Certain lexical items are then selectively substi-

tuted for their syntactic classes. The substitution attempts to replace words

1I use NLProcessor, a commercial parser from Infogistics Ltd. http://www.infogistics.com/.

40

that are specifically related to the search term with general tags. The lexical

forms of these target-specific words are too specific to the search target to

help form general definition patterns and hence are replaced by their part-

of-speech tags. Likewise, I perform the same substitution to noun phrases

identified by chunking as different scenarios usually do not share the same

noun phrase instances. Moreover, I collapse the adjacent syntactic tags of the

same type into one. The substitution rules that I use and some examples are

listed in Table 4.1.

Table 4.1: Heuristics Used for Selective Substitution
Token Substitution Examples (from the

example sentence in
Figure 4.1)

Any part of the
search target

<TARGET> Iqra → <TARGET>

Target-specific
words (centroid
words)

Corresponding syn-
tactic classes deter-
mined by part-of-
speech tags

channel → NN

Noun phrases by
chunking

NP Arab Radio and

Television company

→ NP

is, am, are,

was, were

BE$ is → BE$

a, an, the DT$ the → DT$

All numeric val-
ues

CD$ 63 → CD$

Adjectival and
adverbial modi-
fiers

deleted

All other words
and punctua-
tions

No substitution owned, by, of are
unchanged

3. Window cropping – I only consider the “local context” around <TARGET>.

The context is modeled as a window centered on <TARGET> according to a pre-

41

defined size L, i.e., the number of tokens on both sides of <TARGET>. Thus,

we get pattern instances with size 2L + 1 including the search target.

Determining Substituted Words

In Table 4.1, target-specific words are those non-trivial words that are highly cor-

related to the search target. Centroid words are defined as target-specific words,

selected by the method introduced in Section 3.1.1. As such, centroid words should

be replaced by generic tags. Centroid words vary according to search targets. An

alternate way to determine target-specific words is to examine the frequent words

in the training pattern instances. As definition patterns are supposed to be generic

across targets, there are frequently used words, such as “known” and “born”, across

pattern instances. Pattern instances can be constructed by keeping these common

words and substituting other words for generic syntactic tags. However, I do not

adopt this alternative as it biases the learned definition patterns towards patterns

for certain types of targets because keywords from low-frequency targets’ definitions

tend to be ignored.

4.2 Constructing Soft Pattern Vector

Accumulating all the pattern instances extracted from the definition sentences and

aligning them according to the positions of <TARGET>, I obtain a virtual vector

representing the soft definition patterns. The pattern vector Pa is denoted as:

< slot−L, . . . , slot−2, slot−1, TARGET, slot1, slot2, . . . , slotL : Pa >

where sloti contains a vector of tokens with their probabilities of occurrence:

< (tokeni1, weighti1), (tokeni2, weighti2) . . . (tokenim, weightim) : sloti >

Here tokenij denotes any token, which could be a word, punctuation or syntactic

tag, contained in sloti; and weightij gives the importance of the jth token to the

42

ith slot. weightij can thus be expressed as the conditional probability of the token

occurring in that slot. Thus it can be approximated by:

Pr(tokenij|sloti) =
f(tokenij)

∑m

s=1 f(tokenis)
(4.1)

where f(tokenis) stands for the number of occurrences of tokenis within sloti. Note

that we count frequencies of words and general syntactic tags separately. Syntactic

tags typically have a much higher frequency compared to individual words, and

would thus skew the distribution if combined with words. As such, we need to

separate the two types and estimate each token’s unigram probability against its

own set. I illustrate the process of constructing soft pattern vectors from pattern

instances of training data in Figure 4.2.

Figure 4.2: Constructing Soft Pattern Vectors

43

4.3 Soft Pattern Matching

What results from the generalization process is a virtual vector Pa with a set

of associated probabilities for slot fillers at each slot. The soft pattern vector

Pa is then used to calculate the degree to which a test sentence matches the

sentences used to construct the soft patterns. The test sentences are first pre-

processed with the identical procedures of POS tagging and chunking, as well

as substitution as we did to the labeled definition sentences. Using the same

window size L, the token fragment S surrounding the <TARGET> is retrieved: <

token−L, . . . , token−2, token−1, TARGET, token1, token2, . . . tokenL : S >. The

matching degree of the test sentence to the generalized definition patterns is mea-

sured by the similarity between the vector S and the virtual soft pattern vector Pa.

The matching degree is calculated in two parts. The first part calculates the degree

of similarity between individual slots, while the second part examines sequence fi-

delity. In the first part, we compute Pa weightslots by assuming that all slots are

independent to each other. The score is calculated as:

Pa weightslots = Pr(S|Pa) =
L

∏

i=−L

Pr(tokeni|sloti) (4.2)

Specifically, I combine all the weights calculated in Equation 4.1 to derive the

similarity for independent slots. This equation is very flexible in matching the soft

patterns because it considers only individual slots. Even if some slots are missing,

it still can give a similarity measure to the definition patterns.

The second part of the matching metric considers the sequence of tokens, to

filter out unlikely token sequences to increase precision. I adopt a bigram model to

formulate this sequence measure. Specifically, given a token sequence T , we calcu-

late the conditional probability of Pr(T |Pa) which models how likely the sequence

occurs according to the underlying soft patterns. I calculate the sequence proba-

bility for the left and the right sequences starting from <TARGET>. The probability

44

of the right sequence is calculated as follows:

Pr(right seq|Pa) = Pr(token1, token2, . . . tokenL|Pa)

= Pr(token1) Pr(token2|token1) . . . Pr(tokenL|tokenL−1)(4.3)

where Pr(tokeni|tokeni−1) is estimated by counting the occurrences of the bigram

< tokeni−1 tokeni > and the unigram tokeni−1 as:

Pr(tokeni|tokeni−1) =
f(< tokeni−1, tokeni >)

f(tokeni−1)
(4.4)

The process for calculating the probability of the left sequence is identical. In

addition, Pr(token−1) and Pr(token1) can be estimated based on the proportion

of occurrences of the token in the immediately left and right slots to <TARGET>.

The sequence weight of the token vector for the sentence, denoted by Pa weightseq,

consists of the weights of its left sequence and right sequence which are calculated

by Equation 4.3:

Pa weightseq = (1 − α) Pr(left seq|Pa) + α Pr(right seq|Pa) (4.5)

α is a tunable parameter. Based on my observations of definitions, the right context

of the search term is more important in indicating a definition sentence, thus I set α

to 0.7. Here, I set the parameters based on personal observations; in Section 5.1, I

will show how to estimate the parameters by using expectation maximization (EM)

algorithm.

Finally, the aforementioned two similarity weights determine the overall pat-

tern weight of the given sentence:

Pattern match weight =
Pa weightslots × Pa weightseq

length(S)
(4.6)

where the length of the fragment S is used as the normalization factor.

45

4.4 Unsupervised Learning of Soft Patterns by

Group Pseudo-Relevance Feedback

In order to perform learning for soft patterns, a set of labeled definition sentences

needs to be provided as training instances. While the formal soft pattern models

which will be discussed in the next chapter are trained on manually labeled defini-

tion sentences, I present an unsupervised learning scheme for soft pattern training

based on pseudo-relevance feedback (PRF) in this section. The evaluations in this

chapter are accordingly based on the unsupervised learning. The experimental re-

sults by supervised learning will be presented in the next chapter. While automat-

ically generated training data is not as accurate as manually labeled, the purpose

of this section is to show an alternate way to accumulate training data when there

is no sufficient manual labeling available. In addition, I believe the automatically

generated data can be a good supplement to the supervised data (Sudo, Sekine,

and Grishman, 2001).

The process of the unsupervised soft pattern learning and matching is illus-

trated in Figure 4.3.

Step 1 automatically ranks sentences from the input documents, using cen-

troid words that are highly correlated with the search target as indicators. To

automatically decide whether a sentence is definitional, I use a simple cutoff in

which sentences that are ranked more highly are considered definitional. This is

similar to the work by Sudo et al. (2001), who proposed unsupervised learning

method for pattern discovery by utilizing TF × IDF weight to select a set of rele-

vant documents and sentences, and then built patterns from them.

I employ a group pseudo-relevance feedback (GPRF) strategy. In standard

pseudo-relevance feedback (also known as blind or local feedback) used in document

retrieval, for each query, the top n ranked documents are deemed relevant and used

46

Input: a set of questions and corresponding relevant sen-
tences.

1. First round of ranking (statistical ranking): Rank all
input sentences statistically. I employ the centroid based
ranking (see Section 3.1.1) to accomplish the first round of
ranking.

2. Pseudo-relevance feedback: Take all the top n ranked sen-
tences (n = 10) for each question from the statistical ranking
as labeled definition sentences.

3. Soft pattern construction: Generalize the pseudo-labeled
training sentences from the previous step into pattern in-
stances and construct the soft pattern vector from the pattern
instances.

4. Second round of ranking (incorporating soft pattern
matching): Re-rank the sentences by linearly combining the
statistical centroid based weights and soft pattern matching
weights.

Figure 4.3: The Algorithm for Unsupervised Learning of Soft Patterns

to modify the query to retrieve a new set of documents (Buckley et al., 1994). I

employ the same technique here: the system takes the top n (n = 10) sentences from

each question’s ranking results and combines these sentences over all questions as

(blindly) labeled definition sentences. I then conduct the soft pattern generalization

process on these sentences.

It is worth pointing out that I take all the top ranked sentences from a

group of questions as a batch of labeled definition sentences which are fed into the

pattern generalization module, instead of generalizing patterns from the results of

one question. It makes the “blind” labeling process more reliable by constructing

large training set to combat data sparseness.

47

One assumption here is that the top ranked list actually contains enough

definition sentences that can be used to obtain good patterns. The other important

assumption for group based PRF to work effectively is that the definition patterns

derived from different questions are similar, which is reasonable for the domain of

news. Thus, although some of the top ranked sentences for each search term are

not definitional, the effects of such errors would be mitigated by performing PRF

and pattern generalization over the entire group. Moreover, in journalistic text,

descriptive sentences often contain essential information about the search term.

Therefore some of the definition sentences will rank high by the centroid based

method. This is supported by my experiments on TREC data. I observed that 33%

of the top ten ranked sentences over a question set of 50 questions from TREC-13

were actually definition sentences (165 of 500). While a 33% accuracy rate may

seem low, it is still better than the baseline for performing PRF in (Buckley et

al., 1994). The experimental results in later sections show that the use of PRF

significantly improves the quality of the resulting soft patterns.

4.5 Evaluations

I report on two separate evaluations to show the effectiveness and adaptability

of the soft pattern matching system. The soft patterns are either learned without

supervision by adopting group pseudo-relevance feedback or learned through super-

vision by training on a corpus of crawled news articles. Before coming to discussing

the evaluation results, I will first present the evaluation setup, which includes data

sets, comparison systems and evaluation metrics.

48

4.5.1 Data Sets

I employ the TREC-12 definitional question answering data set (Voorhees, 2003b)

which includes a question set comprising 50 questions and answer judgments. In

addition to the test data, I also accumulated a set of online news articles as training

data. The reason of employing external resources for training is that TREC-12

evaluation is the first to adopt definitional QA task, and thus we lack training data

from previous data sets. In the next chapter, I will present evaluation results based

on the training data coming from preceding tasks. To construct the training corpus,

I collected 26 questions about people and other terms from the Lycos search engine,

which were the most popular queries issued by users, during a day in September

2003. Most of the questions can be found in the Lycos 50 report2. I list the 26

questions in Table A.2 in Appendix A. The questions were submitted to Google to

retrieve news articles from eight news sites, including BBC, CNN and USAToday.

I set the limit for the number of pages downloaded from each site to 200. The

text body of the news pages, embedded between the HTML tags <P> and </P>, is

extracted and preprocessed in the same fashion as was done to the TREC articles.

I asked seven subjects to label all definition sentences. The subjects are

postgraduates in computer science. Four of them are native English speakers. They

were assigned different groups of sentences and each sentence had two people to

label. I keep only those sentences labeled by both assessors as definition sentences.

The labeled sentences are processed into 596 positive and 15,442 negative training

instances. This corpus of crawled news articles is denoted as “Web corpus”.

4.5.2 Comparison Systems Using Hard Matching Patterns

In order to compare the performance of soft pattern matching with hard matching

patterns, I employ two systems that use hard pattern rules from either manually

2http://50.lycos.com

49

construction or machine learning. For these pattern rules, hard matching is per-

formed to match test sentences to the rules.

4.5.2.1 The HCR System

I use the system we developed for the TREC-12’s definitional question answering

task (Cui et al., 2004b). As the system employed hand-crafted rules, I denote it as

HCR. The rules (listed in Table 4.2), partly derived from the previous work (Liu,

Chin, and Ng, 2003; Harabagiu et al., 2000), were carefully constructed for the

TREC corpus. Specifically, HCR differs from the soft matching system in that: (i)

it utilized hand crafted rules as in other existing work, instead of the soft pattern

matching described in this work; and (ii) it uses regular expressions to match the

rules. The system was ranked second according to TREC-12 evaluation, with the

F5 measure of 0.473. Thus I have good reason to believe that HCR is representative

of top performing systems in answering definition questions.

Table 4.2: Manually Constructed Rules Used in HCR.
ID Regular expressions of rules
1 <TARGET> (who | which | that)* (is | are) (called |

known as)*
2 <TARGET> , (a | an | the)

3 <TARGET> (is | are) (a | an | the)

4 <TARGET> , or

5 <TARGET> (- | :)

6 <TARGET> (is | are) (used to | referred to | employed

to | defined as | described as)

7 ‘‘(.+)’’ by <TARGET>

8 (called | known as | referred to) <TARGET>

4.5.2.2 Hard Pattern Rule Induction by GRID

In addition to manually constructed definition patterns, in the evaluations, I also

compare versus system that uses automatically induced rules. Machine-learned

50

1. <TARGET> , DT NN

2. <TARGET> , DT NNP

3. <TAEGET> , who won

4. <TARGET> , (known | listed) as

5. who BE <TARGET> ’s

6. <TARGET> BE DT NN

Figure 4.4: Sample Rules Generated by GRID.

patterns may do better at recall by learning from large-scale training data. Ma-

chine induced rules are widely used for information extraction (Muslea, 1999). To

adapt a rule induction system for information extraction to definition pattern learn-

ing, I apply GRID (Xiao, Chua, and Cui, 2004), a state-of-the-art supervised rule

induction algorithm. I select GRID for two reasons. First, unlike other rule in-

duction algorithms that start with seed rules (Riloff, 1996) or randomly selected

instances (Soderland, 1999), GRID uses corpus-wide distribution statistics to start

the rule induction process. This is likely to fit well with the diversity in definition

patterns. Second, GRID utilizes both tokens and coarse-grained tags (e.g., POS

and phrase level tags) in learning rules. The rules learned by GRID are represented

as regular expressions. I run GRID over the generalized pattern instances from the

labeled definition sentences of the Web corpus to induce definitional pattern rules.

In total, there is a set of 100 rules generated by GRID. An excerpt of the generated

rules is shown in Figure 4.4.

4.5.3 Evaluation Metrics

In order to get comparable evaluation results, I adopt the same evaluation metrics

as used in TREC definitional question answering task (Voorhees, 2003a). For each

51

question from the TREC corpus, there is a list of “vital” nuggets and “okay”

nuggets for answering this question provided by TREC. Vital nuggets represent

the most important facts about the target and should be included in a definition.

Okay nuggets contribute to relevant information but are not essential. Using the

given answer nuggets as a gold standard, an individual definition is scored using

nugget recall (NR) and an approximation to nugget precision (NP) based on length.

Long definition answers will be penalized in precision. These scores are combined

using the Fβ measure with recall being β times as important as precision. I list the

official definition of these metrics in Table 4.3. Note that TREC-12 employed F5

(β = 5) measure while the subsequent TREC employed F3 (β = 3) measure. To be

consistent, since I use TREC-12 data set in this evaluation, I list both F3 and F5

scores, but will use only F3 measure afterwards.

Table 4.3: TREC Definition of NR, NP and Fβ Measure

r number of vital nuggets in the system response
R number of vital nuggets in the gold standard
a number of okay nuggets in the system response
l length of the system response

NR = r
R

NP =

{

1 if l < 100 × (r + a)

1 − l−100×(r+a)
l

otherwise

Fβ = (β2+1) × NR× NP

β2 × NP+NR
β = 3, 5

4.5.4 Effectiveness of Unsupervised Learned Soft Patterns

In this evaluation, I compare the system that uses unsupervised learned soft pat-

terns (SP) by adopting GPRF against the HCR system on the 50 TREC questions.

To illustrate the significance of definition patterns, the baseline system uses only

the centroid based method to rank sentences. In the SP+GPRF system, 683 pat-

tern instances are extracted from the 500 blindly labeled definition sentences. I

52

vary the window size L from 1 to 5 in soft patterns extraction and matching to

study the impact of the distance of contextual slots from the search target. The

results of NR, NP and both F5 and F3 measures are listed in Table 4.4.

Table 4.4: Comparison of NR, NP, F3 and F5 measures. Percentage of improvement
over the baseline is shown in the brackets.

Systems NR NP F3 F5

Centroid
(Baseline)

0.463 0.169 0.394 0.423

HCR 0.514
(+11.05%)

0.206
(+22.05%)

0.447
(+13.45%)

0.472
(+11.52%)

SP+GPRF
(L = 1)

0.561
(+21.14%)

0.206
(+21.78%)

0.479
(+21.34%)

0.507
(+19.65%)

SP+GPRF
(L = 2)

0.601
(+29.74%)

0.221
(+30.94%)

0.513
(+30.03%)

0.539
(+27.20%)

SP+GPRF
(L = 3)

0.579
(+25.16%)

0.217
(+28.24%)

0.496
(+25.82%)

0.531
(+25.37%)

SP+GPRF
(L = 4)

0.551
(+19.05%)

0.204
(+20.82%)

0.471
(+19.40%)

0.495
(+16.97%)

SP+GPRF
(L = 5)

0.557
(+20.33%)

0.204
(+20.45%)

0.475
(+20.40%)

0.484
(+14.35%)

As shown in Table 4.4, we see significant improvements obtained by both

the HCR and SP+GPRF systems over the baseline statistical method, with the

maximum improvement of 13.45% and 30.03%, respectively, for F3 measure. It

shows that both the hand-crafted hard-coded rules as well as the automatically

learned soft patterns are effective in selecting definition sentences. This is in line

with my assumption that news articles define a term or person using some textual

patterns.

We also see that a window size of 2 performs the best. This shows that

definition patterns tend to be restricted to the tokens adjacent to the search term.

The performance of the system drops when the window size reaches 4 or greater.

Although a larger window size takes more contextual information into account, I

believe it also introduces more noise in the distant slots. As phrase chunking and

53

word omission have been done in the soft pattern generation process, I believe that

the resulting small windows capture sufficient context.

The unsupervised SP+GPRF system also outperforms the labor intensive

HCR system. Over a man-month of time was used to develop the hand-crafted

rules through continuous cycle of system coding and performance analysis. Despite

a slight drop in precision for some window size settings, the recall and both F3 and

F5 measures obtained using our techniques are better than those by HCR, with a

maximum improvement of 16.83% for recall and 14.77% for F3 measure with the

window size of 2. A paired t-test gives the p values for the improvements in recall

and F3 measure as 0.069 and 0.007, respectively. I attribute such improvement to

the soft matching patterns which are more flexible than hard coded crafted rules and

thus are more adaptable to diversified patterns reflected in news. Additional benefit

comes from the feasibility of applying GPRF to automatically labeling definition

sentences for pattern discovery.

4.5.5 Comparison with Hard Matching Patterns

In this evaluation, I compare the supervised learned soft patterns with hard match-

ing patterns in the definitional QA system. I have two hypotheses concerning the

use of definition patterns: (a) Manually-constructed patterns ought to be of high

precision but low recall, due to the difficulty in enumerating an exhaustive spec-

ification of definition patterns. Machine-learned patterns may do better at recall

by learning from large-scale training data. (b) Soft matching patterns should out-

perform hard matching systems no matter whether the hard patterns are manually

constructed or machine learned. To validate these hypotheses, I conduct a series of

experiments using the TREC corpus.

Here, I again use HCR as a baseline system. In the second configuration, I

replace the manually constructed rules by a set of 100 hard rules in regular expres-

54

sions generalized by the GRID algorithm over the Web data training set. This set

of hard rules is denoted as “GRID HP”. The third test explores the use of soft pat-

terns derived from all manually labeled definition sentences from the Web corpus.

The resulting group of soft patterns is denoted as “Supervised SP”.

To combine statistical weighting with pattern matching, I apply different

strategies to hard matching rules and soft patterns: As the match is binary for

manually constructed rules and generalized hard rules by GRID, the weight of any

sentence that matches a rule has its score multiplied by a constant factor g, which

is set to 2; this is the optimum setting that I have ascertained in my validation

experiments by varying the setting from 1.2 to 3. When applying soft pattern

matching, the sentences are re-ranked by the linear combination of statistical and

pattern matching weights. I weight evidence from pattern matching higher because

I believe that patterns are better able to identify definition sentences.

Table 4.5: Comparison with Hard Patterns. Percentage of improvement over the
baseline is shown in the brackets.

Use of Patterns NR NP F3 F5

HCR (Baseline) 0.514 0.206 0.447 0.472
GRID HP 0.536 0.222 0.470

(+5.15%)
0.498
(+6.56%)

Supervised SP 0.630 0.243 0.544
(+21.70%)

0.560
(+19.92%)

The evaluation results are presented in Table 4.5. I make the following

observations:

1. Machine learned patterns outperform the manually constructed ones. As

many of the TREC top-performing systems use manually constructed pat-

terns, they are likely to benefit from automatic pattern learning. We see

improvements of 5.15% and 6.56% in both F3 and F5 measures over the man-

ually constructed rules when using the generalized hard patterns generated

55

by GRID. When applying the soft matching patterns over the supervised

training pattern instances, the improvement rises significantly to 21.70% and

19.92%. This validates my hypothesis that manually constructed rules are

often limited in recall. I expect a larger performance gain with more train-

ing instances. This will be validated in the evaluations discussed in the next

chapter.

2. Soft patterns significantly outperform machine-learned hard patterns. Ap-

plying soft patterns over the supervised Lycos pattern instances, the system

performs 12.53% better than when using GRID generalized hard rules in F5

measure. This improvement is statistically significant (p < 0.01). I conjecture

that soft patterns can better capture infrequent definition patterns as they

use all positive instances in the construction of a flexible probabilistic model.

Hard-matching rule induction systems may ignore such infrequent data. In

addition, strict slot-by-slot matching may miss some positive instances that

exhibit minor variations in expressions, which are common to definitions. Soft

patterns thus provide a mechanism to overcome these problems.

4.5.6 Additional Evaluations on the Use of External Knowl-

edge

In addition to the experiments reported in this chapter, I conducted more thorough

experiments on the use of external knowledge in answering definition questions (Cui

et al., 2004a). As described in Section 3.1, in the definitional QA system, the

statistical ranking component leverages evidence about the search target from both

the corpus and external resources, such as WordNet (Fellbaum, 1999) and the Web.

The statistical ranking component identifies significant terms that bear central

information on the search target to locate relevant sentences. In order to find

56

more accurate terms to describe the target, this component often employs a variety

of external resources to find the basic definition of the target. As the effects of

external knowledge deviates from the main theme of soft matching in this thesis,

I only summarize the main results here. Part of the experimental results can be

found in Tables B.1 and B.2 in Appendix B.

1. Specific Web resources are more useful than general Web resources in helping

find more definition sentences. I further divide the external resources into

two categories – general resources, provided in the form of Google snippets

and WordNet definitions; and task-specific resources, in the form of existing

definitions from Answers.com. The main problem is generic resources provide

lower coverage of the search targets and usually offer only relevant information

about the targets, instead of direct definitions.

2. Reinforced by using external resources, the performance of GPRF-based un-

supervised labeling is comparable to that of supervised learning. This shows

that as external knowledge augments the precision of statistical ranking, the

quality of blind feedback is improved, and thus it benefits the unsupervised

learning of soft patterns.

4.6 Conclusion

In this chapter, I have discussed a set of techniques of how to generalize defini-

tion sentences into pattern instances and how to construct soft patterns out of

the pattern instances. Soft pattern matching is better suited for capturing the

diversity of definition patterns in news. I also introduce the application of group

pseudo-relevance feedback (GPRF) to perform automatic labeling of training in-

stances from ranked results. My contribution here is to use GPRF over a large set

of input questions to counter noise and data sparseness. The automatically labeled

57

definition sentences are utilized to generalize soft patterns. I conducted two experi-

ments in evaluating soft pattern matching - one based on unsupervised learning by

using GPRF and the other on supervised training data. I compared soft pattern

matching with hard matching pattern rules, which are manually constructed and

automatically generalized by machine learning. The experimental results show that

machine learning methods for pattern generation outperform manually constructed

patterns used by most current definitional QA systems. More important, soft pat-

tern matching significantly outperforms hard matching rules due to the flexibility

in dealing with variations in natural language.

I have shown a GPRF based unsupervised learning scheme for soft pattern

construction. In the next chapter, I will present formal soft pattern models using

supervised learning by adopting manually labeled training data. However, it is

natural to employ the unsupervised learning algorithm to produce more training

data as supplementary to the manually generated one in future work.

58

Chapter 5

Two Formal Soft Pattern

Matching Models

In the previous chapter, I presented a basic soft pattern matching model, which

aims to overcome the problem of mismatch in pattern matching due to language

variations. While the soft matching method was shown to significantly outperform

hard matching patterns in a definitional QA system, it computes the degree of

match in an ad-hoc manner, and has not been anchored in a theoretically sound

framework. In this chapter, I propose two soft matching models to address this

problem: one based on bigrams and the other on the Profile Hidden Markov Model

(PHMM). Both models provide a theoretically sound method to model pattern

matching as a probabilistic process that generates token sequences. I will demon-

strate the effectiveness of the models on recent TREC data. The experimental

results show that both models significantly outperform state-of-the-art manually

constructed hard matching patterns and the previously proposed basic soft pattern

matching method, which is not optimized for parameter estimation.

A critical difference between the two models is that the PHMM has more

complex topology. As such, it is expected to be able to handle language variations

59

more effectively but requires more training data to converge. I verify this hypothesis

experimentally.

In the next sections, I present the two soft pattern models: the bigram model

and the Profile HMM, respectively. Like the aforementioned basic soft pattern

model, both soft matching models perform training and testing on the basis of

pattern instances, which are abstract token sequences representing the original

sentences. As the generalization of definition sentences into pattern instances has

been discussed in Section 4.1, I proceed directly to present the the models. After

the discussion of models, I come to the evaluations and discussions.

5.1 Bigram Model

The first soft pattern model I introduce is based on n-gram language models. Lan-

guage modeling has been extensively studied in speech recognition, part-of-speech

tagging and syntactic parsing (Rosenfeld, 2000). N -gram language modeling is one

important approach which models local sequential dependencies between adjacent

tokens. Trigrams (n = 3) are a common choice when large training corpora are

available. I use a bigram (n = 2) model for soft pattern matching, as there is only

a limited amount of training data available. I also remedy problems with sparse

data by smoothing n-gram probabilities.

While the original bigram model is simply a product of probabilities of all

bigrams in a sequence, I apply linear interpolation (Manning and Schütze, 1999) of

unigrams and bigrams to represent probability of bigrams. The reason is two-fold:

(1) to smooth probability distribution in order to generate more accurate statistics

for unseen data, and (2) to incorporate conditional probability of individual tokens

60

appearing in specific slots. In particular, I model a sequence of pattern tokens as:

Pr(t1 . . . tL) = Pr(t1|µ)
L

∏

i=2

(λ Pr(ti|ti−1, µ) + (1 − λ) Pr(ti, µ))

= Pr(t1|S1)
L

∏

i=2

(λ Pr(ti|ti−1) + (1 − λ) Pr(ti|Si)) (5.1)

where µ stands for the bigram model and Pr(ti|Si) stands for the conditional prob-

ability of token ti appearing in slot Si. λ is the mixture weight combining the

unigram and bigram probabilities. Note that I use the conditional probability of

a unigram being in a slot to represent unigram probability. This is because the

position of a token is important in modeling: for instance, a comma always ap-

pears in the first slot right of the target in an appositive expression. Incorporating

individual slots’ probabilities enables the bigram model to allow partial matching,

which is a characteristic of soft pattern matching. In other words, even if some

slots cannot be matched, the bigram model can still yield a high match score by

combining the matched slots’ unigram probabilities.

As test instances are often different in length, I normalize the log-likelihood

of Equation 5.1 by the length l of the test instance:

Pnorm(t1 . . . tL) =
1

l
(log Pr(t1|S1) +

L
∑

i=2

log(λ Pr(ti|ti−1) + (1 − λ) Pr(ti|Si)) (5.2)

where l denotes the number of tokens in the test instance.

Next, unigram and bigram probabilities are estimated by their maximum

likelihood (ML) estimates:

PML(ti|Si) =
|ti(Si)|

∑

k |tk(Si)|
(5.3)

PML(ti|ti−1) =
|ti(Si)ti−1(Si−1)|

|ti(Si)|
(5.4)

where ti(Si) denotes that token ti appears in slot Si and |t| denotes the frequency

of the token t. In language modeling, ML estimates often suffer from the sparse

61

data problem. This is exacerbated in my scenario as I count tokens with respect

to slot positions, which makes the training data more sparse. As such, I employ

smoothing to counter this problem. For simplicity, I use Laplace smoothing on

unigram probabilities (recall that bigram probabilities have already been smoothed

by interpolation):

Pr(ti|Si) =
|ti(Si)| + δ

∑

k |tk(Si)| + δ|N(t)|
(5.5)

where |N(t)| gives the total number of unique tokens in my training data and δ is

a constant, which is 2 in my experiments. Note that as described in the basic soft

matching model, I count the general syntactic tags and specific words separately

according to their types in order to avoid general tags skewing the distribution over

specific words due to overwhelming frequency counts.

5.1.1 Estimating the Mixture Weight λ

I use Expectation Maximization (EM) (Dempster, Laird, and Rubin, 1977) to find

optimal settings of λ. Specifically, I estimate λ by maximizing the likelihood of all

training instances given the bigram model. The estimation process is as follows:

λ = argmaxλ

|INS|
∑

j=1

Pr(t
(j)
1 . . . t

(j)
l(j)|µ)

= argmaxλ

|INS|
∑

j=1

1

l(j) − 1

l(j)
∑

i=2

log (λ Pr(t
(j)
i |t

(j)
i−1) + (1 − λ) Pr(t

(j)
i |S

(j)
i))(5.6)

Pr(t1|S1) is ignored because it does not affect the estimation of λ. λ can be esti-

mated using the EM iterative procedure:

1. Initialize λ to a random estimate between 0 and 1, say 0.5.

2. Update λ using:

λ
′

=
1

|INS|
×

|INS|
∑

j=1

1

l(j) − 1

l(j)
∑

i=2

λ Pr(t
(j)
i |t

(j)
i−1)

λ Pr(t
(j)
i |t

(j)
i−1) + (1 − λ) Pr(t

(j)
i |S

(j)
i)

(5.7)

62

where INS denotes all training instances and |INS| is the number of training

instances, which is used as a normalization factor.

3. Repeat Step 2 until λ converges.

I set λ to 0.3 according to the experimental results.

Recall that when combining the pattern matching scores of the left and the

right sequences to the search target previously discussed in Equation 4.5), I set α

to 0.7 based on my observations. I can now apply EM to find an optimal value of

α.

Note that the bigram model is actually a generalization of the basic soft

matching model described before. The bigram model also captures the two metrics

of soft matching – namely, the individual slot match degree and sequential fidelity

– by using unigram probability and bigram probability. More importantly, the

bigram model provides a theoretically sound way to present the process of lexico-

syntactic pattern matching, as well as a set of systematic techniques to optimize

parameter estimations.

5.2 Profile Hidden Markov Model

Although the bigram model allows partial matching, it lacks the ability to deal with

gaps in test instances. For instance, given training instances such as “<TARGET>

which is known for ...”, the trained bigram model cannot give reasonable match

scores to test instances such as “<TARGET> which is best known for ...” or

“<TARGET> , whose xxx is known for ...” even though they are simple vari-

ants of the training instances in which insertions or deletions occur. The gaps can

be captured by Profile HMMs, which allow insertion and deletion editing operations

in the matching process. Figure 5.1 shows the topology of a PHMM.

63

Figure 5.1: Illustration of Topology of the PHMM Model

The PHMM contains a sequence of match states, which are denoted by Mi

(i = 1 . . . L). These match states correspond to slots in pattern instances and

determine model length L. Each match state can emit a token t from all tokens

in the training instances with the emission probability Pr(t|Mi). For each match

state, there is a deletion state, denoted by Di, which does not emit a token and is

used to skip the corresponding match state. Insertion states can emit any token

t with the emission probability Pr(t|Ii). Insertion states insert tokens after match

or deletion states, as with the word best in the earlier example. While transitions

from match states and deletion states always move forward in the model, insertion

states allow self-loops, corresponding to multiple insertions. A token sequence

representing a pattern instance can be generated by moving through this model

with state transition probabilities Pr(Si|Sj). The deletion and insertion states allow

the PHMM to model missing or unobserved words in training. Specifically, the

probability of a sequence of tokens t1 . . . tN that are generated by moving through

the states S0 . . . SL+1 (the start and end states are S0 and SL+1) is as follows:

Pr(t1 . . . tN |S0 . . . SL+1, µ) = T (SL+1|SL)
L

∏

i=1

Pr(tn(i)|Si)T (Si|Si−1) (5.8)

where µ stands for the model. Pr(tn(i)|Si) is set to 1 when Si is a deletion state. To

recognize a definition pattern, I choose the most probable state path in the above

equation to approximate the probability of the sequence being given all possible

64

state paths. The rationale is that the most probable state path often gives a much

higher probability than any other paths. Equation 5.8 can be efficiently calculated

by the forward-backward algorithm (Manning and Schütze, 1999). I employ the

Viterbi algorithm (Manning and Schütze, 1999) to find the most probable state

path. In Figure 5.2, I show an example to illustrate how the PHMM finds the

optimal path to account for the “gaps” between training instances and the test in-

stance. Although the training data does not contain any instance that has “known”

in slot 1 and “NNP” in slot 4, the PHMM automatically selects the path that goes

through a deletion state to skip slot 1 and uses an insertion state to emit “NNP”.

Thus, the tokens are re-aligned with their most probable occurring slots such that

the unseen test instance can still obtain a reasonable generative probability.

Figure 5.2: Illustration of Generating a Test Instance with Gaps Using the PHMM.
Optimal path in bold; words or tags emitted shown in callouts.

65

5.2.1 Estimation of the Model

During training, I need to estimate transition and emission probabilities for the

PHMM. The training process, also called the estimation process, can be accom-

plished by employing the standard Baum-Welch algorithm (Manning and Schütze,

1999). Corresponding to my adaptation to the calculation of sequence probability,

I use the Viterbi algorithm to determine the path with the highest probability dur-

ing the re-estimation process, unlike the standard Baum-Welch algorithm which

considers all possible paths which are weighted by their probabilities.

5.2.2 Initialization of the Model

Although probabilities in a PHMM can be estimated automatically using an itera-

tive EM algorithm starting with random or uniform probabilities, the re-estimation

process can only guarantee that the model reaches local maxima. In addition, in

capturing definition patterns, definition expressions are diverse and sparse in terms

of both lexical tokens and POS tags. If I start with random or uniform setting of the

model, it is likely to end up with an unsatisfactory model that gives close estimates

of different possibilities. To make training manageable given my small training set,

I assume that the most probable state path for a sequence should go through as

many match states as possible. The reason is that although insertion and deletion

states add flexibility, they may hurt generalization of underlying definition patterns

if the model gives high probabilities to them. Specifically, I set the emission proba-

bilities for each match and insertion state using the smoothed maximum likelihood

estimate of the emission probabilities (Equation 5.5). I adjust the initial value of

Pr(t|Ii) such that the probability of emitting a token from match states is always

higher than that from insertion states. I set the initial state transition probabilities

to the inverse proportion of the number of transition links from a state.

66

5.3 Evaluations

I have evaluated the proposed methods in an extensive series of experiments using

the TREC question answering datasets (Cui, Kan, and Chua, 2004; Cui, Kan, and

Chua, 2005), and extend my experiments to test for soft pattern models’ robustness

to scalability and to report soft pattern matching results as measured by recent au-

tomated metrics. More specifically, my evaluation goals are: (1) to re-affirm the

conclusion of soft pattern (SP) models outperform hard pattern matching on a

larger test set which includes the latest TREC-14 data; (2) to testify if the formal

soft matching models are superior to the basic SP model; (3) to verify my hypoth-

esis that the PHMM is able to yield better performance over the bigram model,

given more training data; and (4) to assess the performance of the soft pattern

models using the automatic metrics ROUGE and POURPRE. The latter was re-

cently proposed and specifically designed for automatic evaluation of definitional

QA systems.

I first discuss the experimental setup, then report on the evaluation results.

The evaluations come in two parts: I first show preliminary evaluations on the

basic characteristics of the models – to examine both models’ sensitivity to the

setting of model length and to compare them with the basic soft matching model;

I then present the main experiment which evaluates the two formal SP models on

two TREC datasets. I complete the section with a discussion on the performance

differences between the two SP models.

5.3.1 Evaluation Setup

5.3.1.1 Data Set

I still employ the TREC Question Answering Task dataset for my experiments.

Here, I employ over 200 definition questions, which include questions from recent

67

TREC-13 and TREC-14. For training, I use the TREC-12 and TREC-13 data,

consisting of 114 definition question-answer pairs. Based on the answer nuggets

(ground truth, manually edited data) provided by TREC for these questions, I

manually label 1,769 sentences that cover the nuggets from the corpus as training

definition sentences for estimating the soft matching models.

5.3.1.2 Evaluation Metrics

I adopt three metrics to evaluate definitional QA performance: F3, POURPRE and

ROUGE. The F3 measure is based on a manual examination while the latter two

metrics are automatically evaluated. Automatic scores are a good supplement to

manual evaluations for two reasons. First, as Lin and Demner-Fushman (2005a),

and Xu et al. (2004) suggested, POURPRE and ROUGE are highly correlated with

manual counting of nuggets. Second, manual evaluation can often be inconsistent

across runs (Voorhees, 2003b).

F3 Measure: I first adopt the evaluation metrics used in the TREC definitional

question answering task (Voorhees, 2004). Along with each topic, TREC pro-

vides a list of answer keys (nuggets) to evaluate system responses. Answer

nuggets are labeled as either vital or okay (see Figure 2.2). As described

in Section 4.5.3, vital nuggets represent the most important facts about the

target and should be included in a definition. Okay nuggets contribute to

relevant information but are not essential. Here, I make changes to the con-

struction of gold standards as the recent guidelines from TREC are different

from that used in TERC-12. From TREC-13, the definitional nuggets are

designed for answering questions not covered by answers to the factoid or list

questions about the target. I use these nuggets plus the nuggets reflected by

factoid and list questions to assess the definitional QA systems in my evalu-

ation. The nuggets entailed by factoid and list questions are deemed “vital”

68

(see Section 5.3.1.3). In the manual assessment used in official TREC evalu-

ations, an assessor examines how many vital and okay nuggets are covered in

the returned answer. Each definition is scored using nugget recall (NR) and

an approximation to nugget precision (NP) based on answer length. These

scores are combined using the F3 measure with recall being weighted three

times as important as precision. I listed the official definition of NR, NP and

F3 measures previously in Table 4.3.

POURPRE: Lin and Demner-Fushman (2005a) proposed the POURPRE metric

specifically for evaluating definitional QA systems. POURPRE simulates the

process of manual checking of answer nuggets. It counts the answer nuggets

that are covered by the system response by examining non-trivial unigrams

shared between them. It calculates F3-like scores by using the automatically

determined nuggets. To ensure integrity of the answers, POURPRE counts

only the words appearing within the same answer string. In the default set-

ting, POURPRE counts a nugget matched if the system response covers 0.5%

of all the non-trivial unigrams in the gold standard. I have revised this ratio

to 25% as I have found that the default ratio causes many false positives.

ROUGE: ROUGE (Lin and Hovy, 2003) is a metric originally designed for sum-

marization evaluation and has previously been adapted for definitional QA

evaluation by Xu et al. (2004). I use the metric ROUGE-3, which was adopted

by Xu et al. and counts the trigrams shared between the official answer and

the system answer.

5.3.1.3 Gold Standard for Automatic Scoring

To perform automatic scoring by POURPRE and ROUGE, I construct a gold stan-

dard inventory of sentences that contain answer nuggets provided by TREC.

69

For each search target, I construct two groups of gold standard answers,

ALL and VITAL, which are analogous to the TREC answer nuggets but are at the

sentence level. As stated in Section 5.3.1.2, TREC currently restricts definitional

QA evaluation to “other” questions. As my purpose is to evaluate definitional QA

systems independently of factoid and list QA systems, I include such factoid and

list questions answers in the gold standard definitional answers. The VITAL group

consists of answer nuggets to the factoid and list questions, as well as vital nuggets

to the “other” questions. The ALL group is a superset of VITAL group, which

adds the okay nuggets to the “other” questions. Here, factoid and list answers are

deemed vital nuggets, as the TREC guidelines state that factoid and list questions

should embody essential information about the target.

For each answer nugget, I retrieve up to five sentences that reflect that

nugget as the gold standard. This is because the answer nugget may be embedded

in different sentences, possibly realized with different vocabulary. Accordingly, I

construct five groups of sentences as gold standard answers for each target.

The final scores are the average scores obtained by running the evaluation

tools over the five groups of gold standard sentences. Sample gold standard sen-

tences for TREC topic #72 are given in Table 5.1.

5.3.1.4 System Settings

In my experiments, the base definitional QA system used is illustrated in Figure

3.2. Many other factors may affect the performance of a definitional QA system,

such as the answer length and how external knowledge is utilized. I focus on the

effectiveness of pattern matching for definitional QA, and thus I fix the configuration

of the systems as described in Section 3.1, varying only the module of definition

pattern matching. For comparison, I apply a set of manually constructed hard

matching definition patterns which have demonstrated state-of-the-art performance

70

Table 5.1: Gold Standard Sentences for the Topic 72 “Bollywood”. This is one of
the five groups of gold standard sentences. The third column indicates from what
kind of question the nugget is constructed.
1 VITAL/ALL Factoid Around 800 movies a year come out of India. The

center of the film industry is in Bombay, from
which the name Bollywood is derived.

2 VITAL/ALL Factoid Organizers said they hoped to gain international
recognition for Bollywood, the nickname given to
Bombay, which boasts the world’s second largest
film industry after Hollywood.

3 VITAL/ALL List Shabana Azmi, Amitabh Bachchan, Bobby Deal,
Madhuri Dixit, Sanjay Dutt, Sunil Dutt, Kajol,
Anil Kapoor, Aamir Khan, Salmon Khan, Shah
Rukh Khan, Amisha Patel, Aishwarya Rai, Lisa
Roy, Hrithik Roshan, Sushmita Sen, Sunil Shetty

4 VITAL/ALL Other television production houses, such as Sony enter-
tainment and star TV, pay huge sums to buy the
rights of Bollywood favorites.

5 VITAL/ALL Other There was no shortage of glitz and glamor Satur-
day as Bombay’s biggest films stars were honored
at the International India Film Awards, their cin-
ematic equivalent of the Oscars.

6 VITAL/ALL Other Any taxi driver picked at random can probably
give you a detailed tour of the movie-star homes in
Juhu Beach and Malabar Hill Bombay’s Malibu
and Beverly Hills.

7 ALL Other Few Americans have even heard of Bollywood.
8 ALL Other A new 30-screen cineplex is dedicating six screens

to Bollywood. Three Bollywood movies, known as
extravagant productions of epic lengths and lavish
musical interludes, entered the United Kingdom’s
top 10 list this year.

9 ALL Other Hollywood star Richard Gere was honored by Bol-
lywood at an awards ceremony for some of the top
stars in India.

10 ALL Other A Bollywood version of JANE AUSTEN’S PRIDE
& PREJUDICE received its world premiere on
Mon.

11 ALL Other For Hollywood , poaching Indian film talent and
learning from Bollywood ’s efficient , low - cost
production techniques may become an economic
necessity , as American movie - making costs soar
.

71

as the baseline. The definition patterns used here are a combination of recent ones

from Cui et al. (2004) and Hildebrandt et al. (2004), which comprise the most

complete published list of patterns to my knowledge. This set of definition patterns

are more complete than those used in the previous chapter, listed in Table 4.2. I

list the hard patterns in Table 5.2.

Table 5.2: Hard Definition Patterns Used in the Baseline System

<TARGET> , (a|an|the)

<TARGET> (is|are|was|were) (a|an|the)

<TARGET> , (also)* (known as|called)

<TARGET> (is|are) (usually|generally|normally)*

(called|known as|defined as)

<TARGET> (refer to|refers to|satisfies|satisfy)

known as <TARGET>

<TARGET> (becomes|become|became)

<TARGET> (.{1,40})

<TARGET> , or

<TARGET> (is|are) (usually|generally|normally)*

(being used to|used to|referred to|employed to|

defined as|formalized as|described as|

concerned with|called)

<TARGET> (-|:)

I set answer length N to 14 sentences for all systems to approximate the

desirable answer length used in other successful TREC systems.

Since most of the parameters are estimated during the training process for

soft pattern models, I only need to set model length for both models. In the next

section, I will show the evaluation results of the models’ sensitivity to model length.

72

5.3.2 Analysis of Sensitivity to Model Length

In this section, I vary the only arbitrarily set factor - model length - for the two

models. For simplicity, I employ only automatic ROUGE scores in this evaluation.

I list the ROUGE scores for both models when varying their model length (number

of slots) from 2 to 6 in Table 5.3.

Table 5.3: ROUGE-3 with Different Model Lengths. The percentage values in
parentheses are difference measures compared to the maximum. Note that PHMM
SP’s minimum length for training is 3.
Model Length
(# Slots)

2 3 4 5 6

PHMM
(ALL)

N/A 0.2139
(-4.25%)

0.2234 0.2190
(-1.97%)

0.2125
(-4.88%)

PHMM (VI-
TAL)

N/A 0.2369
(-5.09%)

0.2496 0.2422
(-2.97%)

0.2367
(-5.17%)

BIGRAM
(ALL)

0.2128
(-7.60%)

0.2303 0.2165
(-6.00%)

0.2152
(-6.56%)

0.2086
(-9.42%)

BIGRAM
(VITAL)

0.2340
(-8.34%)

0.2553 0.2363
(-7.44%)

0.2354
(-7.80%)

0.2346
(-8.11%)

In Table 5.3, we see that the bigram model obtains the best performance

with the model length of 3 while the PHMM achieves the highest performance with

the model length of 4. Both models slacken in their performance when more slots

are used.

I also compare percentage change in performance against the highest score

for each scoring metric. The performance of the bigram model fluctuates more over

different model lengths compared to the PHMM. This is evidence that the PHMM

may be more stable amid changes in model typology.

Another observation is that with model lengths of 5 and 6, the PHMM

performs better than the bigram model. I believe that the PHMM model may be

more capable of dealing with longer contexts.

73

5.3.3 Comparison to the Basic Soft Matching Model

In this evaluation, I assess the performance obtained by the two soft matching

models against the basic soft matching model. I set the model length L to optimal

values based on experiment which I have presented in the previous subsection. I

use the system that uses the basic soft matching method as the baseline. This

evaluation is based on the test data of TREC-13 and the soft matching models are

trained on TREC-12 data. I list the evaluation results based on F3 and automatic

ROUGE scores in Table 5.4.

Table 5.4: F3 and ROUGE Performance Comparison (percentage improvement
shown in brackets).

Configurations Basic SP
(Baseline)

Bigram SP PHMM SP

NR 0.5376 0.5519
(+2.66%)

0.5420
(+0.82%)

NP 0.3238 0.3403
(+5.10%)

0.3264
(+0.80%)

F3 0.4937 0.5088
(+3.06%)

0.4971
(+%0.69)

ROUGE (ALL) 0.2233 0.2303
(+3.13%)

0.2234
(+0.05%)

ROUGE (VI-
TAL)

0.2378 0.2553
(+7.36%)

0.2496
(+5.00%)

From Table 5.4, we can see both the bigram model and the PHMM outper-

form the Basic SP in all scores. The bigram model outperforms the basic SP by

7.36% (p = 0.09) and 3.06% (p = 0.1) in ROUGE (using vital nuggets) and F3

scores, respectively. The PHMM achieves 5.00% improvement over the basic SP in

ROUGE score (using vital nuggets). These results show that the basic soft match-

ing method is not optimized in parameter setting. Finding best parameters is often

tedious and difficult for such ad hoc systems. In contrast, the bigram model and the

PHMM provide a sound framework for parameter estimation. This should facilitate

74

the migration of the two generic soft matching models to other applications.

In this evaluation, one may see that the PHMM does not perform as well

as the bigram model. This is because I employ only the TREC-12 data set for

training. Using more training data may make the PHMM perform better than the

bigram model, which I will present in the main evaluation described in the next

section.

5.3.4 Main Evaluation Results and Discussion

In this section, I show the results for the main evaluation of the two soft pattern

matching models. I conducted two experiments on two data configurations: one

is trained on TREC-12 data and tested on TREC-13 data; the other is trained on

the data sets of TREC-12 and TREC-13 and tested on recent TREC-14 data. I

use the system that employs the manually constructed definition patterns listed in

Table 5.2 as the baseline system. I list the scores of F3, POURPRE and ROUGE

by the systems in Table 5.5.

I conjectured that the PHMM could perform better as it has a more complex

topology that could potentially capture more language variations. However, in the

evaluation described in the previous section, limited by the small size of training

data, I could not demonstrate that the PHMM is able to perform better than the

bigram model. Given the additional training data in the second data configuration,

I hope to verify this hypothesis.

Since the results in Table 5.6 are partially shown in Table 5.4 except newly

added POURPRE scores, I mainly discuss the results in Table 5.5. I make the

following observations from the results:

1. Soft pattern models outperform hard pattern matching. As Tables 5.5 and

5.6 show, both the bigram model and the PHMM perform significantly better

than the baseline system using hard patterns in F3 scores and automatic

75

Table 5.5: Performance Comparison of F3, POURPRE and ROUGE Scores on
TREC-14 Data Set (trained on TREC-13 and 12 data) - percentage of improvement
over the baseline is shown in the brackets; ** and * represent different significance
levels, p < 0.01 and p < 0.05, respectively.

System Setting Hard Pattern
(Baseline)

Bigram SP PHMM SP

NR 0.3042 0.3348
(+10.06%)

0.3527**
(+15.97%)

NP 0.1391 0.1509
(+8.48%)

0.1508
(+8.41%)

F3 0.2628 0.2911
(+10.73%)

0.3035**
(+15.45%)

POURPRE (ALL) 0.2400 0.2539
(+5.77%)

0.2556*
(+6.49%)

POURPRE (VI-
TAL)

0.3410 0.3668*
(+7.57%)

0.3730**
(+9.38%)

ROUGE-3 (ALL) 0.0984 0.1004
(+2.05%)

0.1096
(+11.42%)

ROUGE-3 (VI-
TAL)

0.1022 0.1080
(+5.69%)

0.1095
(+7.15%)

POURPRE scores. This re-affirms my conclusion drawn earlier that soft

pattern models are more capable of identifying definition sentences and boost

the performance of definitional QA systems.

The significance levels of the improvements over the baseline vary across the

automatic scores of POURPRE and ROUGE. This may be caused by mis-

matches in which automatic evaluation methods incorrectly credit system

responses. For instance, the following sentence for the target ”DePauw Uni-

versity”:

. . . will provide scholarships to DePauw University stu-

dents from Indiana, Illinois, Michigan and Ohio.

is mis-matched to the vital nugget:

76

Table 5.6: Performance Comparison of F3, POURPRE and ROUGE Scores on
TREC-13 Data Set (trained on TREC-12 data) - percentage of improvement over
the baseline is shown in the brackets; ** and * represent different significance levels,
p < 0.01 and p < 0.05, respectively.

System Setting Hard Pattern
(Baseline)

Bigram SP PHMM SP

NR 0.5027 0.5519*
(+9.79%)

0.5420*
(+7.82%)

NP 0.3159 0.3403
(+7.72%)

0.3264
(+3.32%)

F3 0.4633 0.5088**
(+9.83%)

0.4971**
(+7.30%)

POURPRE (ALL) 0.2785 0.2921
(+4.88%)

0.2896
(+3.99%)

POURPRE (VI-
TAL)

0.4238 0.4580**
(+8.07%)

0.4528*
(+6.84%)

ROUGE-3 (ALL) 0.2106 0.2303
(+9.37%)

0.2234
(+6.08%)

ROUGE-3 (VI-
TAL)

0.2286 0.2553*
(+11.67%)

0.2496
(+9.18%)

Some institutions, like Rhodes College in Tennessee, DePauw

University in Indiana and Bucknell University in Pennsylvania,

say they allow students to keep 100 percent of outside scholar-

ships.

due to the match of non-trivial words in bold. As such, automatic scores

are unable to discern between verbose answers which overlap with the gold-

standard sentences. I feel that automatic checking of answer nuggets is a

good supplement, but not a substitute, for manual checking.

2. Given more training data, the PHMM outperforms the bigram model. I use

1,769 training sentences by combining the labeled definition sentences from

TREC 12 and 13, as compared to only 761 training sentences from using only

TREC-12 in my previous work. I further complete the experimentation on the

77

hypothesis that the PHMM can achieve better performance than the bigram

model given more training data. As seen in Table 5.5, the PHMM outperforms

the bigram model by 4.26% in F3 measure and by 9.18% in ROUGE score

based on All nuggets.

3. Evaluation results are dependent on the determination of vital and okay

nuggets. The evaluation scores by both manual and automatic checking on

TREC-14 data are lower across the board compared with those from TREC-

13 data. In addition, the statistical significance test values (p-values) on

the difference between the evaluation scores obtained by systems using the

TREC-14 data are less significant than those using the TREC-13 data. I

conjecture that this is due to that there are more targets in TREC-14 that

have only a few vital nuggets. Lin and Demner-Fushman (2005b) studied the

gold standard answer nuggets in TREC-12, 13 and 14. They found that 5

targets (out of 75 targets) have only one vital nugget and 16 targets have two

vital nuggets in TREC-14, whereas the corresponding numbers are 2 and 15

in TREC-13 (out of 64 targets). As only vital nuggets count for NR, missing

any of the few vital nuggets causes scores to drop to zero for some targets. As

such, I see significant drop in the evaluation scores and a lower level of sta-

tistical significance for the results that are obtained from using the TREC-14

test data.

How Much Can the PHMM Help?

While I have shown that given more training data, the PHMM performs better

than both hard patterns and the bigram model, I have yet to quantitatively mea-

sure how much PHMM can improve over other matching models. Is the PHMM’s

more flexible matching mechanism actually responsible for its improvement over

the bigram model?

78

To answer this question, I analyze the sentences that are retrieved only by the

PHMM and not by the bigram model. In particular, I rank the sentences for each

topic using both soft pattern models alone (without centroid ranking). I take the

top ranked 50 sentences per topic (which I deem definitional) and get the differing

sentences that are in the PHMM’s resulting set but not in the bigram model’s. In

total, I obtain 1,187 unique sentences.

In particular, I want to find the proportion of these sentences that were

retrieved by the PHMM specifically by its edit operations. This can be done by

checking whether a sentence retrieved by the PHMM was retrieved due to a non-

trivial insertion/deletion operation. Here, insertion immediately followed by dele-

tion (or vice versa) is an alternative to matching, and is considered a trivial use

of the PHMM states, because that can be simulated in the bigram model. Use

of isolated and repeated insertion or deletion states (i.e., non-trivial uses) in the

PHMM cannot be represented in the bigram model. I generate the optimal state

transition paths calculated by the Viterbi algorithm for the left and the right se-

quences for each sentence. I count the number of sentences whose optimal state

sequences include such non-trivial insertion and deletion operations.

I obtain 194 sentences (or 16.34% out of 1,187 sentences) that are exclusively

retrieved by the PHMM by virtue of its edit operations. Such a small percentage

of non-trivial state sequences partially explains why there is not a large margin of

difference in the performance between the PHMM and the bigram model on my

data set. Given a more noisy data set, such as web pages, the PHMM may perform

even better because more sentences that cannot be matched within the training

data would benefit from insertion and deletion operations.

Furthermore, I break down the 194 sentences into left and right sequences.

I observe 160 left sequences and 38 right sequences. It shows that the left context

to the search target is more diversified than the right one, and thus it needs to be

79

combined with the use of insertion and deletion states to find the best matching

state sequence. In addition, I have 1,218 left pattern instances vs. 1,563 right

pattern instances in the training data. As such, with less training data, it is more

likely for a left sequence not to be matched by any training instances.

5.4 Conclusion

I have proposed two generic soft pattern models – one based on a bigram language

model and the other on the PHMM – to identify definition sentences in a definitional

question answering system. Both models provide formal probabilistic methods to

model lexico-syntactic patterns represented by token sequences. The experimen-

tal results show that both models significantly outperform the system that uses

carefully constructed hard matching patterns. In particular, I have shown that the

PHMM is more capable of dealing with gaps in pattern matching caused by lan-

guage variations by performing insertion and deletion editing operations. In order

to show the effectiveness of the PHMM, I employ more manually labeled data for

estimating the models. The evaluation results show that given more training data,

the PHMM can actually perform better than the bigram model due to the diver-

sity of definition patterns. Moreover, I quantitatively analyze how many definition

sentences that are retrieved by the PHMM but missed by the bigram model really

benefit from the PHMM’s special operations of insertion and deletion. However,

in my data set, I find only a small amount of sentences that have gaps with the

training patterns, which partially explains why the PHMM does not have a large

margin over the bigram model.

80

Chapter 6

Soft Matching of Dependency

Relations

In the previous two chapters, I have discussed soft matching of lexico-syntactic

patterns, i.e., soft patterns, in definitional question answering. As described in

Chapter 3, in my question answering framework, producing a summary of definition

for the search target is only the first step. The system is then able to answer specific

factoid questions around the target in the subsequent processes. I present a precise

sentence retrieval module for answering factoid questions in this chapter.

Most current factoid question answering (QA) systems employ term-density

ranking to retrieve answer passages. Such methods often retrieve incorrect pas-

sages as relationships among question terms are not considered. Previous stud-

ies attempted to address this problem by matching dependency relations between

questions and answers. They used strict matching, which fails when semantically

equivalent relationships are phrased differently. I implement soft matching of de-

pendency relations on statistical models. I will present two methods for learning

relation mapping scores from past QA pairs: one based on mutual information and

the other on expectation maximization.

81

The soft matching of dependency relations embodies the two-anchor soft

matching scheme as described in Section 1.1. It takes the matched question terms

as anchors and the dependency relations between them as matching units. I do

not apply the formal statistical models developed for the one-anchor soft matching

scheme presented in the previous chapter for this task due to two reasons: (1)

In definition sentence retrieval, my goal is to generalize generic patterns from the

training instances. Pattern generation and matching is to learn to classify token

sequences. In contrast, relation matching deals with a more ad-hoc scenario as it

computes the similarity between two sets of relations regardless of their sequences.

We only need to learn pair-wise individual relation similarities from the training

data. (2) The length of matching units varies for relation matching. Different from

pattern matching for which I fix the model length for capturing contexts within the

text window, the numbers of relations between matched words may vary greatly.

As such, it is difficult to employ the bigram model or the PHMM to model relation

similarities.

This chapter flows as follows. I first discuss how to extract and pair corre-

spondent relation paths (i.e., multiple relations), from a dependency tree. I then

present how to calculate the soft matching scores between the correspondent rela-

tion paths. I show evaluation results and discussions to finish the chapter.

6.1 Soft Relation Matching for Passage Retrieval

To gain more flexibility in incorporating relation matching, I propose a novel soft

relation matching method which examines grammatical dependency relations be-

tween question terms to improve current passage retrieval techniques for question

answering. I employ Minipar to accomplish dependency parsing. I present a statis-

tical technique for measuring the degree of match of pertinent relations in candidate

sentences with their corresponding relations in the question. Sentences that have

82

similar relations between question terms are preferred. Specifically, for non-trivial

question terms, I collate all single relations between any two terms (or nodes) in the

parse tree and I term that as a relation path. The overall likelihood of a candidate

sentence in terms of dependency relations is the combination of the soft matching

scores of all relation paths between the matched question terms.

I also conduct a series of extrinsic experiments to demonstrate the effective-

ness of soft relation matching for passage retrieval on the TREC-12 QA task data.

When applied on top of standard density-based lexical matching systems, the rela-

tion matching method significantly improves these systems by 50 to 78 percent in

mean reciprocal rank (MRR). I also examine how two other QA parameters inter-

act with relation matching in passage retrieval: query length and query expansion.

A key finding is that longer queries benefit more from utilizing relations. To show

better performance, I apply the soft relation matching method to a QA system that

is reinforced by query expansion and obtain a further 50% performance enhance-

ment. In addition, I show that a full QA system employing relationship matching

reaches the top performance in TREC, without parameter tuning.

Next, I present how relation paths are extracted and paired from parse trees,

and then adopt a variation of IBM translation model 1 (Brown et al., 1993) to

calculate the matching score of a relation path given another, which combines

the mapping scores of single relations in both paths. I present two methods to

learn a pair-wise relation mapping model from training data: one is based on a

variation of mutual information (MI) that captures the bipartite co-occurrences of

two relations in the training data, and the other is based on the iterative training

process presented in (Brown et al., 1993) using expectation maximization (EM).

83

6.1.1 Extracting and Paring Relation Paths

Relation paths between nodes from dependency trees for sentences generated by

Minipar are extracted for comparison. Figure 6.1 illustrates the dependency trees

for the sample question and the answer sentence S1 presented in Figure 2.3.

Question:
Path ID Node1 Path Node2
<PQ1> Wisconsin < subj > produce
<PQ2> produce < head, whn, prep, pcomp − n > cheese
<PQ3> nation < gen > cheese
S1:
<PS1> Wisconsin < pcomp − n,mod, i > produce
<PS2> produce < obj,mod, pcomp − n > cheese
<PS3> nation < gen > cheese

Figure 6.1: Dependency Trees for the Sample Question and Sentence S1 in Fig-
ure 2.3. Some nodes are omitted due to lack of space.

In a dependency tree, each node represents a word or a chunked phrase,

and is attached with a link representing the relation pointing from this node (the

governor) to its modifier node. Although dependency relations are directed links, I

ignore the directions of relations. This is because the roles of terms as governor and

modifier often change in questions and answers. The label associated with the link

is the type of the dependency relation between two nodes. Examples of relation

labels (or relations for short) are subj (subjective), mod (modifying) and pcomp-n

(nominal complement of a preposition). There are 42 such relation labels defined

in Minipar.

I further define a relationship path (or simply path) between nodes n1 and n2

as the series of edges that traverse from n1 to n2, as in (Lin and Pantel, 2001). In

this way, my system is able to capture long dependency relations. For simplicity,

I consider a path as a vector P <Reli>, where Reli denotes single relations. In

84

Figure 6.2, I illustrate several paths extracted from two parse trees.

Figure 6.2: Relation Paths Extracted from the Dependency Trees in Figure 6.1.

Two constraints are imposed when extracting paths:

1. The path length cannot exceed a pre-defined threshold. The length of a

path is defined as the number of relations in the path. In my system, the

threshold is set to 7 based on my experiments on a small validation dataset.

The purpose is to exclude exceptionally long paths as Minipar only resolves

nearby dependencies reliably.

2. Relation paths between two words if they belong to the same chunk (which is

usually a noun phrase or a verb phrase, as determined by Minipar) are ignored.

For instance, the relation between “28” and “percent” in “28 percent” is

ignored because they belong to the same NP chunk as parsed by Minipar. A

similar example is “New” and “York” in “New York”.

85

To determine the relevance of a sentence given another sentence in terms of

dependency relations, I need to examine how similar all the corresponding paths

embedded in these two sentences are. I determine such paired corresponding paths

from both sentences by matching their nodes at both ends. For instance, PQ1

and PS1 are paired corresponding paths with the matched nodes “Wisconsin” and

“produce” in Figure 6.1. Note that I match only the root forms of open class words

(or phrases), such as nouns, verbs and adjectives, when pairing corresponding paths.

6.1.2 Measuring Path Matching Scores by Translation Model

After extracting and pairing relation paths from both a question and a candidate

sentence, I need to measure the soft matching score of the paths extracted from

the sentence according to those from the question. For instance, in Figure 6.1,

I calculate and combine the matching scores of the paths <pcomp-n, mod, i>,

<obj, mod, pcomp-n> and <gen> based on their corresponding counterparts from

the question: <subj>, <head, whn, prep, pcomp-n> and <gen> respectively. This

example also illustrates that in real corpora, the same relationship between two

words is often represented by different combinations of relations. I conjecture that

such variations in relations hinder existing techniques (e.g., (Attardi et al., 2001;

Katz and Lin, 2003)) that attempt to use strict matching to achieve significant

improvements over lexical matching methods. In contrast, I approach this problem

by employing a fuzzy method to achieve soft relation matching.

I derive the matching score between paths by extending IBM statistical trans-

lation model 1. While statistical translation model has been applied in information

retrieval (Berger and Lafferty, 1999) and answer extraction (Echihabi and Marcu,

2003), my use of it for the task of matching dependency relation paths is new. I

treat the matching score of a relation path from a candidate sentence as the proba-

bility of translating to it from its corresponding path in the question. Let us denote

86

two paired corresponding paths from question Q and sentence S respectively as PQ

and PS, whose lengths are represented as m and n. The translation probability

Pr(PS|PQ) is the sum over all possible alignments:

Pr(PS|PQ) =
ǫ

mn

m
∑

α1=1

· · ·

m
∑

αn

n
∏

i=1

Pt(Rel
(S)
i |Rel(Q)

αi
) (6.1)

where Rel
(S)
i stands for the ith relation in path PS and is the corresponding relation

in path PQ. The alignments of relations are given by the values of αi which indicates

the corresponding relation in the question given relation Rel
(S)
i . ǫ stands for a

small constant. Pt(Rel
(S)
i |Rel

(Q)
j) denotes the relation translation probability, i.e.,

relation mapping scores, which are given by a translation model learned during

training and will be described in the next subsection. Unlike machine translation,

I assume that every relation can be translated to another; thus, I do not include a

NULL relation in position 0. Note that Pt(Rel
(S)
i |Rel

(Q)
j) is 1 when Reli and Relj

are identical because the translation probability is maximized when a relation is

translated to itself.

While IBM model 1 considers all alignments equally likely, I consider only

the most probable alignment. The reason is that, unlike text translation that

works with long sentences, relation paths are short. Most often, the most probable

alignment gives much higher probability than any other alignments. I calculate

the alignment by finding the most probable mapped relation in the path from the

question for each relation in the path from the sentence based on relation translation

probability. As such, the path translation probability is simplified as:

Pr(PS|PQ) =
ǫ

mn

n
∏

i=1

Pt(Rel
(S)
i |Rel

(Q)
Ai

) (6.2)

where Ai denotes the most probable alignment. Moreover, I use only the length n

of the path PS in normalizing Equation 6.2. Since I rank all candidate sentences

according to the same question, the length of each path extracted from the question

87

is constant, and does not affect the calculation of the translation probability. I take

the log-likelihood of Equation 6.2 and remove all constants. The matching score of

PS finally is as follows:

SoftMatchScore(PS) = Pr(PS|PQ)

=
ǫ′

n

n
∑

i=1

log(Pt(Rel
(S)
i |Rel

(Q)
Ai

)) (6.3)

where n is used as a normalization factor and ǫ′ is a small constant.

Finally, I sum up the matching scores of each path from the sentence which

has a corresponding path in the question to be the relation matching score of the

candidate sentence given the question. This score reflects how well the candidate

sentence’s relations match those of the question: a high score indicates that the

question terms are likely to be used with the same semantics as in the question,

and that the sentence is more likely to contain a correct answer.

6.1.3 Relation Match Model Training

I have described in the above subsection how to obtain a relation matching score

between a sentence and the question, and that this process requires a relation

mapping model as input, i.e., Pt(Rel
(S)
i |Rel

(Q)
j) in Equation 6.3. In this subsection,

I show how the mapping model can be acquired by two statistical methods from

training question-answer pairs: one based on mutual information (MI) and the

other based on expectation maximization (EM).

The assumption is that paired corresponding paths extracted from training

QA pairs are semantically equivalent. Thus, the relation mapping between such

training answer sentences and questions can be used as a model for unseen questions

and potential answers as well. I use Minipar to parse all the training questions and

corresponding answer sentences. Relation paths extracted from the question are

paired with those from answer sentences, as described in Section 6.1.1.

88

I first employ a variation of mutual information1 to calculate relation map-

ping scores. The relatedness of two relations is measured by their bipartite co-

occurrences in the training path pairs. Different from standard mutual informa-

tion, I account for path length in my calculation. Specifically, I discount the co-

occurrence of two relations in long paths. The mutual information based score of

mapping relation to relation is calculated as:

P
(MI)
t (Rel

(S)
i |Rel

(Q)
j) = log

∑

γ × δ(Rel
(Q)
j , Rel

(S)
i)

∣

∣

∣
Rel

(Q)
j

∣

∣

∣
×

∣

∣

∣
Rel

(S)
i

∣

∣

∣

(6.4)

where δ(Rel
(Q)
j , Rel

(S)
i) is an indicator function which returns 1 when Rel

(Q)
j and

Rel
(S)
i appear together in a training path pair, and 0 otherwise. γ is the inverse

proportion of the sum of the lengths of the two paths. |Rel(Q)| stands for the number

of paths extracted from all questions in which relation Rel occurs. Likewise, |Rel(S)|

gives the number of paths extracted from all answer sentences that contain relation

Rel.

In the second configuration, I employ GIZA (Al-Onaizan et al., 1999), a

publicly available statistical translation package, to implement IBM translation

model 1 training over the paired training paths. Each relation is considered a word

and each corresponding path pair is treated as a translation sentence pair, in which

the path from a question is the source sentence and the path from the answer

sentence is the destination sentence. The resulting word translation probability

table is used to define relation mapping score Pt(Rel
(S)
i |Rel

(Q)
j). GIZA performs

an iterative training process using EM to learn pairwise translation probabilities.

In every iteration, the model automatically improves the probabilities by aligning

relations based on current parameters. The training process is initialized by setting

translation probability between identical relations to 1 and a small uniform value

for all other cases, and then runs EM to convergence.

1I use frequencies instead of probabilities in Equation 6.4 to approximate mutual information
and use the logarithm to scale the result.

89

6.2 Evaluation

In this section, I present empirical evaluation results to assess my soft relation

matching technique for passage retrieval systems. I have three hypotheses to test

in the experiments:

1. The relation matching technique improves the precision of current lexical

matching methods. Moreover, the proposed soft relation matching method

outperforms the strict matching methods proposed in previous work.

2. Long questions are more suitable for relation matching. I hypothesize that

the effectiveness of relation matching is affected by question length. Long

questions, with more question terms, have more relation paths than short

questions, and benefit more from relation matching.

3. Relation matching also brings further improvement to a system that is already

enhanced with query expansion because of the high precision it allows. I test

whether the soft relation matching technique brings further improvement to

a passage retrieval system that uses query expansion.

6.2.1 Evaluation Setup

I use the factoid questions from the TREC-12 factoid QA task (Voorhees, 2003b)

as test data and the AQUAINT corpus to search for answers. The reason to choose

TREC-12 test data is that the questions are long enough to obtain corresponding

relation paths to perform relation matching. I accumulate 10,255 factoid question-

answer pairs from the TREC-8 and 9 QA tasks for use as training data, which

results in 3,026 unique corresponding path pairs after removing pairs with identical

paths for model construction using both MI and EM based training methods.

There are 413 factoid questions in the TREC-12 task, from which 30 NIL-

answer questions are excluded because they do not have answers in the corpus.

90

TREC-12 had a passage retrieval task which used the same factoid questions as

the main task except it accepted longer answers (250 bytes). Since I intend to

evaluate passage retrieval techniques, I create the gold standard based on the official

judgment list for the passage retrieval task provided by TREC. For each question,

I generate a list of passages that are judged to be correct and supported by the

corpus in the judgment list as standard answer passages. I cannot create the gold

standard for 59 of the questions because no correct passages for them were judged by

TREC evaluators. This leaves me with a final test set of 324 QA pairs, on which all

evaluations in this paper are based. While Tellex et al. (2003) made use of TREC-

supplied exact answer patterns to assess returned passages, I observe that common

answer patterns can be matched in incorrect passages as answer patterns are usually

very short. I therefore use a stricter criterion when judging whether a passage is

correct: it must be matched by the exact answer pattern, and additionally, it must

have a cosine similarity equal to or above 0.75 with any standard answer passage.

Similar to the configuration used by Tellex et al. (2003), I use the top 200

documents for each question according to the relevant document list provided by

TREC as the basis to construct the relevant document set for the questions. If the

200 documents do not contain the correct answer, I add the supporting documents

that have the answer into the document set. I conduct different passage retrieval

algorithms on the document set to return the top 20 ranked passages. Note that

the optimal passage length varies across different retrieval algorithms. For instance,

SiteQ is optimized to use a passage length of three sentences (Tellex et al., 2003). In

my evaluations for relation matching techniques, I take one sentence as a passage,

as Minipar can only resolve intrasentential dependency relations. But for SiteQ,

I still use the three-sentence window to define a passage. I use four systems for

comparison:

MITRE (baseline): This approach simply matches stemmed words between ques-

91

tion and answer.

Strict Matching of Relations: A system that uses strict matching of relations

to rank sentences. It employs the same technique as soft matching to extract

and pair relation paths, but it counts the number of exact path matches as

its ranking score.

SiteQ: One of the top performing density-based systems in previous work. I follow

the adaptation described in (Tellex et al., 2003) in my implementation.

NUS (Cui et al., 2004b): I utilize our factoid QA system at NUS for partici-

pating TREC in 2004. It is another top-performing system, which is similar

to SiteQ except that it uses single sentences as passages and calculates sen-

tence ranking scores by iteratively boosting a sentence’s score with adjacent

sentence scores.

I employ three performance metrics: mean reciprocal rank (MRR), percent-

age of questions that have no correct answers, and precision at the top one passage.

The former two metrics are calculated on the returned 20 passages by each system.

MRR is defined as average(1
Ri

), where Ri is the rank of the first correct answer for

question Qi.

6.2.2 Performance Evaluation

In the first experiment, I evaluate the overall performance of my relation matching

technique compared to other passage retrieval systems.

I apply both strict and soft matching of relations in my experiments. I per-

form relation matching on the MITRE and NUS systems but not on SiteQ as it

retrieves multiple-sentence passages, in which cross-sentence dependencies cannot

be modeled by my system. For simplicity, I linearly combine the normalized lexical

92

matching score obtained by MITRE or NUS and the relation matching score to

obtain the overall ranking score of a sentence. In calculating soft relation match-

ing scores, I utilize the two relation mapping score models generated by both the

MI-based and EM-based training methods. I illustrate the evaluation results in

Table 6.1.

Table 6.1: Overall Performance Comparison of MRR, Percentage of Incorrectly
Answered Questions (% Incorrect) and Precision at Top One Passage. Strict rela-
tion matching is denoted by Rel Strict, with the base system in parentheses. Soft
relation matching is denoted by Rel MI or Rel EM for both training methods. All
improvements obtained by relation matching techniques are statistically significant
(p < 0.001)
Passage

retrieval

systems

MITRE SiteQ NUS Rel Strict

(MITRE)

Rel Strict

(NUS)

Rel MI

(MITRE)

Rel EM

(MITRE)

Rel MI

(NUS)

Rel EM

(NUS)

MRR 0.2000 0.2765 0.2677 0.2990 0.3625 0.4161 0.4218 0.4756 0.4761
% MRR

improvement

over:

MITRE N/A +38.26 +33.88 +49.50 +81.25 +108.09 +110.94 +137.85 +138.08
SiteQ N/A N/A N/A +8.14 +31.10 +50.50 +52.57 +72.03 +72.19
NUS N/A N/A N/A +11.69 +35.41 +55.43 +57.56 +77.66 +77.83

% Incor-
rect

45.68% 37.65% 33.02% 41.96% 32.41% 29.63% 29.32% 24.69% 24.07%

Precision
at top one
passage

0.1235 0.1975 0.1759 0.2253 0.2716 0.3364 0.3457 0.3889 0.3889

From the table, I draw the following observations:

1. Applying relation matching over lexical matching methods boosts system per-

formance dramatically. Applied on top of the MITRE and NUS systems, both

strict and soft relation matchings augment performance in all metrics signif-

icantly. When integrating strict relation matching with the NUS system,

MRR improves by 35% and 31% over the results obtained by the standard

93

NUS and SiteQ systems respectively. Relation matching also yields better

precision in the top one passage task. When soft relation matching is applied

on top of NUS, the system achieves even better results. Here, all improve-

ments obtained by relation matching are statistically significant as judged

by using paired t-test (Hull, 1993) (p < 0.001). I believe that the improve-

ment stems from the ability of the relation matching technique to model

dependency relationships between matched question terms. Thus, many false

positive sentences that would be favored by normal bag-of-word approaches

are subsequently eliminated as they often do not contain the correct relations

between question terms.

Interestingly, even strict matching of relations significantly improves the per-

formance of a passage retrieval system while work in answer extraction (e.g. (At-

tardi et al., 2001)) seems to be hindered by strict matching. I conjecture that

the passage retrieval task is less constraining than answer extraction as the

latter has to match relations of the identified target for the question. As such,

I feel passage retrieval is more likely to benefit from relation matching.

2. Soft relation matching outperforms strict matching significantly. When inte-

grated with the NUS system, it gains a statistically significant improvement of

31% in MRR and 43% in precision at top one passage when using soft match-

ing of relations over strict matching. Note that while strict matching does

not bring large improvements in terms of percentage of incorrect questions

compared to lexical matching methods, the soft relation matching method

decreases such errors by 34% in comparison to NUS and by 56% compared to

MITRE. Strict matching often fails due to variations in representing the same

relationship because of parsing inconsistency and the flexibility exhibited in

natural language. Such interchangeability between relations is captured by

soft matching methods. In this way, my statistical model is able to accom-

94

modate the variation in natural language texts.

3. Using MI and iterative EM to train relation mapping scores does not make

any obvious difference in my tests. However, I present both training methods

because they differ in complexity and scalability. The MI method has lower

complexity compared to the EM method because it does not perform any

alignment of relations during training, as it uses relation co-occurrences as

approximations to relation mapping. The EM training process does alignment

by improving the probability of alignment iteratively. I conjecture that the

EM training method could outperform the MI method if a larger amount of

training data is available. MI-based mapping scores are likely to be more

susceptible to noise when scaling up. The EM training method is unlikely to

suffer due to its gradual improvement mechanism. However, I cannot show

the scalability of the two training methods given my limited test and training

data.

6.2.3 Performance Variation to Question Length

It seems intuitive that longer questions are likely to benefit more from relation

matching than shorter questions. The rationale is that more relation paths in

longer sentences lead to more reliable relation ranking scores. In this experiment,

I examine the effect of varying the number of non-trivial question terms on MRR.

Among the 324 questions in my test set, the number of question terms varies

from 1 to 13, after removing trivial stop words such as “what”. In Figure 6.3, I plot

the MRR values along with 95% error bars of the systems that apply soft relation

matching with EM training on top of the MITRE and NUS systems when question

length is varied. I consider only questions with two to six non-trivial question terms

because there are less than 10% of questions with fewer than two or more than six

question terms in my test set.

95

Figure 6.3: MRR Variation w.r.t. Number of Question Terms.

From Figure 6.3, it can be seen that as indicated by little overlap of the

error bars, MRR nearly monotonically increases when more terms are present in

the question. This is evidence that longer questions are more likely to improve with

relation matching. I surmise that with more paired corresponding paths, relation

matching based ranking would be of higher precision.

Note that number of question terms is only an approximation of number of

actual paired corresponding relation paths. However, as the number of relation

paths extracted for each question varies more than the number of question terms

does, my small test data prevents us from conducting thorough experiments to

examine the effect of number of relation paths on matching. Future work on a

larger dataset can be done to reinforce the results shown here.

6.2.4 Performance with Query Expansion

As discussed above, short questions are obstacles in enhancing performance using

relation matching. State-of-the-art QA systems adopt query expansion (QE) to

alleviate such problems (Cui et al., 2004b; Harabagiu et al., 2003; Ittycheriah,

Franz, and Roukos, 2001). Here, I show how performance varies when the relation

96

matching technique is reinforced by query expansion.

I conduct simple query expansion as described in (Cui et al., 2004b), which

submits the question to Google and selects expansion terms based on their co-

occurrences with question terms in result snippets. I use the same method as

described in the first two experiments to linearly combine the lexical matching

score with query expansion and the relation matching score. I list the evaluation

results in Table 6.2.

Table 6.2: Performance Comparison with Query Expansion. All the improvements
shown are statistically significant (p − value < 0.001).

Passage Retrieval

Systems

NUS (base-

line)

NUS+QE Rel MI

(NUS+QE)

Rel EM

(NUS+QE)

MRR (% improve-

ment over baseline)

0.2677 0.3293
(+23.00%)

0.4924
(+83.94%)

0.4935
(+84.35%)

% MRR im-

provement over

NUS+QE

N/A N/A +49.54% +49.86%

% Incorrect 33.02% 28.40% 22.22% 22.22%
Precision at top one

passage

0.1759 0.2315 0.4074 0.4074

With query expansion, the performance of NUS (the lexical matching based

system) again improves greatly. Specifically, query expansion reduces the percent-

age of incorrect answers from 33% to 28.4%. This is close to the figures obtained

by relation matching methods without query expansion as listed in Table 6.1. This

shows that query expansion boosts recall using expansion terms, allowing the sys-

tem to answer more questions correctly.

When relation matching is incorporated into the NUS system along with

query expansion, MRR values are boosted by 49%, which is statistically significant.

This demonstrates that my relation matching technique can help re-rank passages

to allow higher precision when the system is equipped with query expansion.

However, query expansion does not boost the performance of systems with

97

relation matching as significantly as compared to the improvement over the baseline

lexical based system without query expansion. Comparing Tables 6.1 and 6.2, the

improvement in performance for a system with query expansion is about 2% in

MRR (from 0.4756 to 0.4924 when using MI training and from 0.4761 to 0.4935

when using EM training). I believe that this is caused by the simple strategy

I use to integrate lexical matching with relation matching. Since I just sum up

matching scores, my relation matching model does not take full advantage of query

expansion because external expansion terms do not have relation paths with the

original question terms in the question. As such, expansion terms do not improve

the relation path pairing process in my current system.

6.2.5 Case Study: Constructing a Simple System for TREC

QA Passage Task

In the above experiments, I conducted component evaluations for passage retrieval

for factoid questions. A natural question is whether the incorporation of rela-

tion matching into a standard QA system can yield good performance. Such a

fully-fledged QA system adds query expansion, question typing and named entity

extraction on top of simple passage similarity. In this case study, I construct a

simple QA system on top of the NUS passage retrieval module reinforced by soft

relation matching and query expansion. Both question typing and NE extraction

modules are rule-based, as employed in a TREC QA system (Cui et al., 2004b). I

return the first top-ranked sentence that contains the expected named entity as the

answer passage. The average length of the returned passages is 181 bytes.

I evaluate the QA system in the context of the QA passage task of TREC-

12 (Voorhees, 2003b). The system answers 175 questions correctly out of the total

324 questions, resulting in an accuracy of 0.540. When averaging over all 383

questions that do not have NIL answers, the accuracy is 0.457, which is still better

98

than the second ranked system in the official TREC-2003 evaluations (Voorhees,

2003b).

6.2.6 Error Analysis and Discussions

Although I have shown that relation matching greatly improves passage retrieval,

there is still plenty of room for improvement. A key question is whether I can

further characterize the types of questions that are adversely affected by relationship

matching. Based on the above two experiments, I perform micro-level error analysis

on those questions for which relation matching degrades performance. I find that

soft relation matching sometimes fails with incorrectly paired relation paths mainly

for the following two reasons:

Mismatch of question terms: In some cases, the paths are incorrectly paired

due to the mismatch of question terms. For instance, given the question

#1912 “In which city is the River Seine?”, the correct answer should be

“Paris”. Without question analysis and typing, the relation matching algo-

rithm mistakenly takes “city” as a question term, instead of recognizing it as

the question target. Thus, sentences containing all three question terms, i.e.,

“city”, “river” and “Seine”, are ranked high while the correct answer does not

contain “city”. To overcome this problem, question analysis in the passage re-

trieval system needs to be incorporated such that the question target and the

answer candidate of the expected type can be matched when corresponding

relation paths are paired.

Paraphrasing between question and answer sentences: Some correct sentences

are paraphrases of the given question. In this case, both lexical matching and

relation matching are likely to fail. Consider the question: “What company

manufactures X?” The correct sentence is: “. . . C, the manufacturer of

99

X . . .”. The system needs to resolve such a paraphrase as “C is the manufacturer

of X → C manufactures X” to answer this kind of questions. Lin and Pan-

tel (2001) attempted to find paraphrases (also by examining paths in Mini-

par’s output parse trees) by looking at common content between the two

nodes at both ends of relations. However, their method is limited as it relies

on abundant training data to find inference rules between specific relations.

6.3 Conclusion

In this chapter, I have presented a novel soft relation matching technique for fac-

toid QA passage retrieval. My evaluation results show that the technique produces

significant improvements in retrieval performance in current systems: a vast 50–

138% improvement in MRR, and over 95% in precision at top one passage. Soft

matching of dependency relations is calculated based on the degree of match be-

tween relation paths in candidate sentences and the question. To learn a model of

relationship matching from training data, I have presented two methods based on

mutual information and EM. While these two methods do not make an obvious dif-

ference given my test data, I believe that EM scales better and may perform better

when given a larger amount of training data. Furthermore, the relation matching

technique has shown itself capable of bringing significant improvement in retrieval

performance across all the architectures I have tested, regardless of whether or not

query expansion is used.

Past work has shown that strict matching does not perform well in answer

extraction. I have shown that this conclusion does not generalize to all QA modules.

A contribution of my work is the demonstration that even strict matching of rela-

tions significantly augments the performance of current passage retrieval modules.

This may be explained by the fact that passage retrieval imposes less constraint

in matching relations than answer extraction. Future work is expected to improve

100

answer extraction by using relations effectively.

The empirical evaluation results and qualitative error analysis reveal that

the relation matching method can be improved by better alignment of relation

paths. Relation paths often cannot be paired due to few matched question terms

or paraphrasing, both of which could be alleviated by query expansion. While I

have benchmarked the performance of relation matching with query expansion, my

experiment has not fully integrated the modules in the sense that I have not taken

advantage of expanded terms in relation matching. Seamless integration of query

expansion with relation matching is likely to produce further gains in performances

and is a logical next step in future research.

101

Chapter 7

Conclusion

In this thesis, I have identified the weaknesses in matching syntactic and seman-

tic features in current question answering systems. I provided two soft matching

schemes to theoretically and practically combat the problems. The two soft match-

ing schemes have been implemented using statistical models, which could be utilized

to build a question answering system. Given a search target, the QA system first

gives a definition for the target and then answers a series of specific factoid questions

about it. In the process of writing this thesis, I have touched upon related disci-

plines of information retrieval and natural language processing in order to provide

usable solutions to the problems identified.

In this chapter, I will recap the contributions of the research and summarize

them in the next subsections. I will then discuss the limitations of this work. I

conclude the whole thesis with the outline of future work.

7.1 Contributions

This thesis makes the following main contributions to the studies in both informa-

tion retrieval and natural language processing:

102

1. Soft matching models for lexico-syntactic patterns.

2. Soft matching of dependency relations for passage retrieval.

3. Two key components for an integrated question answering system.

I summarize the contributions individually.

7.1.1 Soft Matching Models for Lexico-Syntactic Patterns

I developed three soft pattern models – one basic model and two formal ones based

on the bigram model and the PHMM, respectively – to achieve flexible matching of

lexico-syntactic patterns. Soft patterns contribute to the field of pattern learning

and matching in natural language processing. Pattern matching has been widely

applied to text extraction, such as information extraction and question answering.

I have reviewed the literature on rule induction and pattern learning. I found that

most existing work focuses on the learning phase of rules and patterns. Often, the

pattern rules are represented in regular expressions with constraints in each slot to

facilitate matching.

In contrast, the two formal soft pattern models are generic in the sense that

they model the pattern matching process as the process of generating token se-

quences. Soft pattern models a generalization of the conventional hard pattern

matching process. By enforcing all individual slots to emit the exact tokens and

setting sequential probabilities to one, the soft matching models revert to regular

expression based hard matching. In contrast, equipped with the learned probabili-

ties based on training data, the soft pattern models can better model variations in

natural language texts. As such, the soft pattern models can be easily extended to

other applications where textual pattern matching plays an important role.

In addition to the models of matching, I also developed strategies for gen-

eralizing sentences into abstract pattern instances. The generalization procedure

103

produces more generic instances such that the pattern learning and matching are

conducted on a more general basis.

A key contribution of this work is that it greatly improves definition sentence

retrieval for existing definitional QA systems. I have experimentally shown that the

system using soft pattern matching significantly outperforms that using state-of-

the-art manually constructed hard matching patterns by 10% - 15% in F3 measure.

7.1.2 Soft Matching of Dependency Relations for Passage

Retrieval

This thesis also contributes to the state-of-the-art in passage retrieval. I developed

statistical model for soft matching of dependency relations between matched ques-

tion terms. Combining lexical matching and similarity measure between grammati-

cal relations, the passage retrieval for factoid QA has been significantly improved. I

demonstrated how to adapt the IBM translation model 1 to measure the similarity

between relation paths in a parsing tree. In addition, in order to learn similarity

between individual relations, I developed two training methods based on past QA

pairs – one is based on the co-occurrences of relations measured by mutual infor-

mation; the other is based on EM to iteratively learn the mapping probabilities of

relations.

This work contributes to information retrieval. The two-anchor soft match-

ing scheme employed in this work utilizes dependency relations as the features for

soft matching. The features may be replaced by other syntactic and semantic fea-

tures. As such, one may substitute the matching features to further enhance the

performance of passage retrieval.

Based on the evaluation results, I showed that passage retrieval based on

simple lexical matching in a factoid QA system could be improved by over 70%

when applying soft matching of dependency relations. I believe this has contributed

104

significantly to research in question answering because passage retrieval is a crucial

step in modern QA systems.

7.1.3 Two Components for an Integrated Question Answer-

ing System

Another contribution of this thesis is that I have developed the two components

which can be utilized in an integrated QA system. I successfully applied the two soft

matching schemes in the components such that the modules of definition sentence

retrieval and passage retrieval for factoid questions achieve the similar level of

performance or outperform the state-of-the-art QA systems.

This QA system embodies the information search process for advanced users.

To complete the system, I also contributed to other modules, such as definition

summarization. It has been employed as a testbed for experimenting with other

advanced features for question answering.

7.2 Limitations of this Work

This thesis has made contributions in fulfilling an advanced user’s information need.

However, it has several limitations that are hopefully addressed in the future work.

• Lack of approximate lexical match in soft matching of feature se-

quences – While I have presented two soft matching schemes to realize flex-

ible match of feature sequences, I noticed that there lacks semantic approxi-

mation for lexical terms in my system. Approximate match of lexical terms

often relies on external resources, such as WordNet or other thesauri, to se-

mantically relate two words. For instance, “kill” and “murder” should be

considered matched if other constraints are satisfied. Such techniques have

been employed in current question answering systems, e.g., (Harabagiu et al.,

105

2000; Chu-Carroll et al., 2004). However, in my soft matching methods, I

mainly focus on solving the problem brought by editing processes on token

sequences, i.e., the gaps between training and test sequences. I employed

only simple morphological forms (after stemming) of lexical words in both

soft pattern matching and soft relation matching. This simplification incurs

problems – e.g. the soft pattern match degree is degraded when there are un-

matched words in some of the slots due to alternative in wording; similarly,

the anchor nodes cannot be matched such that soft relation matching can by

no means be conducted.

We have tried to remedy this problem in soft relation matching by adopt-

ing WordNet to find similar words when matching anchor nodes (Sun et al.,

2005). However, we did not obtain improved results by employing WordNet

to expand the words. I conjecture that the main reason is that WordNet is

designed for general linguistic use and may not be suitable for accomplish-

ing such real search applications, where certain term usages may be domain

dependent.

• Lack of ability in answering other types of questions – To date, my

question answering system can only answer definition and factoid questions

about the search target. I have not applied the soft matching techniques

in answering other types of questions in the system. For instance, I have

not touched upon list questions. I believe soft matching of dependency rela-

tions may help improve the performance of list question answering because

list questions can be answered by aggregating factoid answers from differ-

ent documents. In addition, answering opinion related questions (Yu and

Hatzivassiloglou, 2003) should be implemented in such a QA system. For

advanced users, they may ask questions similar to “what is the opinions from

some parties about the target?” To answer such questions, the system first

106

has to identify opinion sentences about the target. This task is similar to

definition sentence retrieval. There is work that learns patterns for subjec-

tive expressions to identify the sentences that may bear opinions (Riloff and

Wiebe, 2003). I believe that soft pattern matching models can contribute to

this field as subjective expressions are even more diversified than objective

ones, and thus soft matching patterns may gain more improvements. To syn-

thesize these opinion sentences, the summarization technique introduced in

Chapter 3 can be employed along with other specific processes.

7.3 Future Work

I summarize the routes for future research.

• Experimenting with other features in soft matching. In soft matching

evaluation, I employed syntactic features such as noun phrase chunks and

part-of-speech tags, as well as grammatical features like dependency relations.

There is still much room to experiment with more semantic features such

as named entities. While noun phrase chunks are approximation of named

entities, precision can be augmented if named entity classes can be employed

as general tags in pattern instance generalization and in anchor matching

for relation matching. However, to better make use of named entities, the

problem of name normalization should be considered, e.g., a person’s name

can be written in different forms.

• Extending the soft matching schemes to other related applications

As stated before, while I experiment on definitional QA with the soft pattern

models, the models are generic and can be applied to the following applica-

tions:

107

1. Information extraction (IE) – The pattern matching problem in IE tasks

is formally the same as definition sentence retrieval. When conducted

on free text, an IE system may also suffer from various unseen instances

not being matched by trained patterns. Xiao et al. (2004) have demon-

strated that soft pattern matching greatly improves recall in an IE sys-

tem. Although some HMM topologies have been employed for IE tasks,

the soft pattern models are more generic and require less configuration

and parameter tuning when changing domains.

2. Factoid question answering – Pattern matching is also utilized to improve

precision in factoid QA (Ravichandran and Hovy, 2002; Harabagiu et al.,

2005). Soft pattern models should be trained on each kind of questions

along with the question taxonomy.

Soft relation matching can also find its applications in passage retrieval for

different retrieval systems. Soft matching of relations between words is sup-

posed to improve all types of passage retrieval systems. It would also be help-

ful to examine if other types of relations, such as semantic relations based on

predicates, help in passage retrieval.

• More user studies in evaluating the integrated QA system. I have

demonstrated the component-wise performance of the QA modules experi-

mentally. However, the performance measurement is based on the effective-

ness of the sub-systems, instead of user satisfactions for the whole integrated

QA system. As the QA system is designed to fulfill the advanced requirement

of users, it is imperative to conduct user studies to analyze how much the QA

system can help users improve quality of their search results. It would be

interesting to see how much the definition of the search target can help the

user improve search quality for the follow-up factoid questions.

108

• Completing the components of the QA system. The QA system lacks

components in dealing with other types of questions. Completing these mod-

ules is a reasonable step to take. In addition, it is also helpful to design

and build a useful user interface, which can lead the user through the search

process.

109

References

Agichtein, Eugene, Luis Gravano, Jeff Pavel, Viktoriya Sokolova, and Aleksandr

Voskoboynik. 2001. Snowball: A prototype system for extracting relations

from large text collections. In SIGMOD Conference.

Ahn, David, Valentin Jijkoun, Gilad Mishne, Karin M̈uller, Maarten de Rijke, and

Stefan Schlobach. 2004. Using Wikipedia at the TREC QA track. In TREC.

Al-Onaizan, Yaser, Jan Curin, Michael Jahr, Kevin Knight, John Lafferty, Dan

Melamed, Franz Josef Och, David Purdy, Noah A. Smith, and David

Yarowsky. 1999. Statistical machine translation: Final report. Technical

report, Johns Hopkins University 1999 Summer Workshop on Language En-

gineering.

Attardi, Giuseppe, Antonio Cisternino, Francesco Formica, Maria Simi, and

Alessandro Tommasi. 2001. PiQASso: Pisa Question Answering System.

In TREC.

Battelle, John. 2005. The Search: How Google and Its Rivals Rewrote the Rules of

Business and Transformed Our Culture. Penguin Group.

Berger, Adam and John Lafferty. 1999. Information retrieval as statistical trans-

lation. In SIGIR ’99: Proceedings of the 22nd Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval,

pages 222–229, New York, NY, USA. ACM Press.

Blair-Goldensohn, Sasha, Kathleen McKeown, and Andrew Hazen Schlaikjer. 2003.

A hybrid approach for qa track definitional questions. In TREC, pages 185–

192.

Blair-Goldensohn, Sasha, Kathleen McKeown, and Andrew Hazen Schlaikjer. 2004.

Answering definitional questions: A hybrid approach. In New Directions in

Question Answering, pages 47–58.

110

Brill, Eric, Jimmy J. Lin, Michele Banko, Susan T. Dumais, and Andrew Y. Ng.

2001. Data-intensive question answering. In TREC.

Brown, Peter F., Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L.

Mercer. 1993. The mathematics of statistical machine translation: Parame-

ter estimation. Comput. Linguist., 19(2):263–311.

Buckley, Chris, Gerard Salton, James Allan, and Amit Singhal. 1994. Automatic

query expansion using SMART: TREC 3. In TREC.

Carbonell, Jaime G. and Jade Goldstein. 1998. The use of MMR, diversity-based

reranking for reordering documents and producing summaries. In SIGIR

’98: Proceedings of the 21st Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, August 24-28 1998,

Melbourne, Australia, pages 335–336. ACM.

Chu-Carroll, Jennifer, Krzysztof Czuba, John Prager, Abraham Ittycheriah, and

Sasha Blair-Goldensohn. 2004. IBM’s PIQUANT II in TREC 2004. In

TREC.

Ciravegna, Fabio. 2001. Adaptive information extraction from text by rule induc-

tion and generalisation. In IJCAI, pages 1251–1256.

Cui, Hang, Min-Yen Kan, and Tat-Seng Chua. 2004. Unsupervised learning of soft

patterns for generating definitions from online news. In WWW, pages 90–99.

Cui, Hang, Min-Yen Kan, and Tat-Seng Chua. 2005. Generic soft pattern models

for definitional question answering. In SIGIR ’05: Proceedings of the 28th

Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 384–391, New York, NY, USA. ACM Press.

Cui, Hang, Min-Yen Kan, Tat-Seng Chua, and Jing Xiao. 2004a. A comparative

study on sentence retrieval for definitional question answering. In SIGIR

2004 Workshop IR4QA: Information Retrieval for Question Answering.

111

Cui, Hang, Keya Li, Renxu Sun, Tat-Seng Chua, and Min-Yen Kan. 2004b. Na-

tional University of Singapore at the TREC-13 question answering main task.

In Proceedings of TREC-13.

Cui, Hang, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-Seng Chua. 2005. Ques-

tion answering passage retrieval using dependency relations. In SIGIR ’05:

Proceedings of the 28th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 400–407, New

York, NY, USA. ACM Press.

Dempster, A.P., N.M. Laird, and D.B. Rubin. 1977. Maximum Likelihood from

incomplete data via the EM algorithm (with discussion). Journal of the

Royal Statistical Society, 39:1–38.

Echihabi, Abdessamad and Daniel Marcu. 2003. A noisy-channel approach to

question answering. In ACL ’03: Proceedings of the 41st Annual Meeting on

Association for Computational Linguistics, pages 16–23, Morristown, NJ,

USA. Association for Computational Linguistics.

Fellbaum, Christiane. 1999. WordNet: an electronic lexical database. Cambridge,

Mass : MIT Press.

Gaizauskas, Robert, Mark A. Greenwood, Mark Hepple, Ian Roberts, and Horacio

Saggion. 2004. The University of Sheffields TREC 2004 Q&A experiments.

In TREC.

Gao, Jianfeng, Jian-Yun Nie, Guangyuan Wu, and Guihong Cao. 2004. Depen-

dence language model for information retrieval. In SIGIR ’04: Proceedings

of the 27th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 170–177, New York, NY, USA.

ACM Press.

Goldstein, Jade, Mark Kantrowitz, Vibhu O. Mittal, and Jaime G. Carbonell. 1999.

112

Summarizing text documents: Sentence selection and evaluation metrics. In

SIGIR, pages 121–128.

Han, Kyoung-Soo, Hoojung Chung, Sang-Bum Kim, Young-In Song, Joo-Young

Lee, , and Hae-Chang Rim. 2004. Korea University question answering

system at TREC 2004. In TREC.

Harabagiu, Sanda M., Steven J. Maiorano, and Marius A. Pasca. 2003. Open-

domain textual question answering techniques. Nat. Lang. Eng., 9(3):231–

267.

Harabagiu, Sanda M., Dan I. Moldovan, Christine Clark, Mitchell Bowden, Andrew

Hickl, and Patrick Wang. 2005. Employing two question answering systems

in TREC-2005. In TREC.

Harabagiu, Sanda M., Dan I. Moldovan, Christine Clark, Mitchell Bowden, John

Williams, and Jeremy Bensley. 2003. Answer mining by combining extrac-

tion techniques with abductive reasoning. In TREC, pages 375–382.

Harabagiu, Sanda M., Dan I. Moldovan, Marius Pasca, Rada Mihalcea, Mihai Sur-

deanu, Razvan C. Bunescu, Roxana Girju, Vasile Rus, and Paul Morarescu.

2000. FALCON: Boosting knowledge for answer engines. In TREC.

Hildebrandt, Wesley, Boris Katz, and Jimmy J. Lin. 2004. Answering definition

questions with multiple knowledge sources. In HLT-NAACL, pages 49–56.

Hovy, Eduard, Laurie Gerber, Ulf Hermjakob, Chin-Yew Lin, and Deepak

Ravichandran. 2001. Toward semantics-based answer pinpointing. In HLT

’01: Proceedings of the First International Conference on Human Language

Technology Research, pages 1–7, Morristown, NJ, USA. Association for Com-

putational Linguistics.

Hovy, Eduard H., Ulf Hermjakob, and Chin-Yew Lin. 2001. The use of external

knowledge of factoid QA. In TREC.

113

Hull, David A. 1993. Using statistical testing in the evaluation of retrieval experi-

ments. In SIGIR, pages 329–338.

Ittycheriah, Abraham, Martin Franz, and Salim Roukos. 2001. IBM’s statistical

question answering system - TREC-10. In TREC.

Kaszkiel, Marcin and Justin Zobel. 1997. Passage retrieval revisited. In SIGIR

’97: Proceedings of the 20th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 178–185, New

York, NY, USA. ACM Press.

Katz, Boris, Matthew Bilotti, Sue Felshin, Aaron Fernandes, Wesley Hildebrandt,

Roni Katzir, Jimmy Lin, Daniel Loreto, Gregory Marton, Federico Mora,

and Ozlem Uzuner. 2004. Answering multiple questions on a topic from

heterogeneous resources. In TREC.

Katz, Boris and Jimmy Lin. 2003. Selectively using relations to improve precision in

question answering. In Proceedings of the EACL-2003 Workshop on Natural

Language Processing for Question Answering.

Klavans, Judith and Smaranda Muresan. 2001. Evaluation of definder: a system

to mine definitions from consumer-oriented medical text. In JCDL, pages

201–202.

Lee, Gary Geunbae, Jungyun Seo, Seungwoo Lee, Hanmin Jung, Bong-Hyun Cho,

Chanhki Lee, Byung-Kwan Kwak, Jeongwon Cha, Dongseok Kim, JooHui

An, Harksoo Kim, and Kyungsun Kim. 2001. SiteQ: Engineering high

performance QA system using lexico-semantic pattern matching and shallow

NLP. In Proceedings of TREC-10.

Light, Marc, Gideon S. Mann, Ellen Riloff, and Eric Breck. 2001. Analyses for

elucidating current question answering technology. Journal for Natural Lan-

guage Engineering, 7(4):325–342.

114

Lin, Chin-Yew and Eduard H. Hovy. 2003. Automatic evaluation of summaries

using n-gram co-occurrence statistics. In HLT-NAACL.

Lin, Dekang. 1998. Dependency-based evaluation of MINIPAR. In Proceedings of

Workshop on the Evaluation of Parsing Systems.

Lin, Dekang and Patrick Pantel. 2001. Discovery of inference rules for question

answering. Journal for Natural Language Engineering, 7(4):343–360.

Lin, Jimmy and Dina Demner-Fushman. 2005a. Automatically evaluating answers

to definition questions. In HLT/EMNLP, pages 931–938.

Lin, Jimmy and Dina Demner-Fushman. 2005b. Will pyramids built of nuggets

topple over? Technical Report LAMP-TR-127/CS-TR-4771/UMIACS-TR-

2005-71, University of Maryland, College Park, December.

Lin, Jimmy, Dennis Quan, Vineet Sinha, Karun Bakshi, David Huynh, Boris Katz,

and David R. Karger. 2003. What makes a good answer? the role of context

in question answering. In Proceedings of the Ninth IFIP TC13 International

Conference on Human-Computer Interaction.

Liu, Bing, Chee Wee Chin, and Hwee Tou Ng. 2003. Mining topic-specific concepts

and definitions on the web. In WWW, pages 251–260.

Manning, Christopher D. and Hinrich Schütze. 1999. Foundations of Statistical

Natural Language Processing. The MIT Press, Cambridge, Massachusetts.

McCallum, Andrew, Dayne Freitag, and Fernando C. N. Pereira. 2000. Maximum

Entropy Markov Models for information extraction and segmentation. In

ICML, pages 591–598.

Moldovan, Dan I., Marius Pasca, Sanda M. Harabagiu, and Mihai Surdeanu. 2003.

Performance issues and error analysis in an open-domain question answering

system. ACM Trans. Inf. Syst., 21(2):133–154.

Muresan, Smaranda, Samuel D. Popper, Peter T. Davis, and Judith L. Klavans.

115

2003. Building a terminological database from heterogeneous definitional

sources. In DG.O.

Muslea, Ion. 1999. Extraction patterns for information extraction tasks: A survey.

In Proceedings of AAAI-99 Workshop on Machine Learning for Information

Extraction, pages 1–6.

Nahm, Un Yong and Raymond J. Mooney. 2001. Mining soft-matching rules from

textual data. In IJCAI, pages 979–986.

Peng, Fuchun, Ralph Weischedel, Ana Licuanan, and Jinxi Xu. 2005. Combining

deep linguistics analysis and surface pattern learning: A hybrid approach to

chinese definitional question answering. In HLT/EMNLP, pages 307–314.

Prager, John, Dragomir Radev, and Krzysztof Czuba. 2001. Answering what-

is questions by virtual annotation. In HLT ’01: Proceedings of the First

International Conference on Human Language Technology Research, pages

1–5, Morristown, NJ, USA. Association for Computational Linguistics.

Prager, John M., Jennifer Chu-Carroll, Krzysztof Czuba, Christopher A. Welty,

Abraham Ittycheriah, and Ruchi Mahindru. 2003. IBM’s PIQUANT in

TREC2003. In TREC, pages 283–292.

Radev, Dragomir R., Hongyan Jing, Magorzata Sty, and Daniel Tam. 2004.

Centroid-based summarization of multiple documents. Inf. Process. Man-

age., 40(6):919–938.

Radev, Dragomir R. and Kathleen McKeown. 1998. Generating natural lan-

guage summaries from multiple on-line sources. Computational Linguistics,

24(3):469–500.

Ravichandran, Deepak and Eduard H. Hovy. 2002. Learning surface text patterns

for a question answering system. In ACL, pages 41–47.

Riloff, Ellen. 1993. Automatically constructing a dictionary for information ex-

traction tasks. In AAAI, pages 811–816.

116

Riloff, Ellen. 1996. Automatically generating extraction patterns from untagged

text. In AAAI/IAAI, Vol. 2, pages 1044–1049.

Riloff, Ellen and Janyce Wiebe. 2003. Learning extraction patterns for subjective

expressions. In Michael Collins and Mark Steedman, editors, Proceedings of

the 2003 Conference on Empirical Methods in Natural Language Processing,

pages 105–112.

Rosenfeld, Ronald. 2000. Two decades of statistical language modeling: Where do

we go from here. Proceedings of the IEEE, 88(8).

Salton, Gerard and Michael McGill. 1984. Introduction to Modern Information

Retrieval. McGraw-Hill Book Company.

Sarner, Margaret H. and Sandra Carberry. 1988. A new strategy for providing

definitions in task-oriented dialogues. In Proceedings of the 12th Conference

on Computational linguistics, pages 567–572, Morristown, NJ, USA. Associ-

ation for Computational Linguistics.

Schiffman, Barry, Inderjeet Mani, and Kristian J. Concepcion. 2001. Producing

biographical summaries: Combining linguistic knowledge with corpus statis-

tics. In ACL, pages 450–457.

Schwartz, Ariel S. and Marti A. Hearst. 2003. A simple algorithm for identify-

ing abbreviation definitions in biomedical text. In Pacific Symposium on

Biocomputing, pages 451–462.

Skounakis, Marios, Mark Craven, and Soumya Ray. 2003. Hierarchical Hidden

Markov Models for information extraction. In IJCAI, pages 427–433.

Soderland, Stephen. 1999. Learning information extraction rules for semi-

structured and free text. Machine Learning, 34(1-3):233–272.

Song, Fei and W. Bruce Croft. 1999. A general language model for information

retrieval. In CIKM, pages 316–321.

117

Sudo, Kiyoshi, Satoshi Sekine, and Ralph Grishman. 2001. Automatic pattern

acquisition for Japanese information extraction. In HLT ’01: Proceedings

of the First International Conference on Human Language Technology Re-

search, pages 1–7, Morristown, NJ, USA. Association for Computational

Linguistics.

Sun, Renxu, Hang Cui, Keya Li, Min-Yen Kan, and Tat-Seng Chua. 2005. De-

pendency relation matching for answer selection. In SIGIR ’05: Proceedings

of the 28th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 651–652, New York, NY, USA.

ACM Press.

Tellex, Stefanie, Boris Katz, Jimmy Lin, Aaron Fernandes, and Gregory Marton.

2003. Quantitative evaluation of passage retrieval algorithms for question

answering. In SIGIR ’03: Proceedings of the 26th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval,

pages 41–47, New York, NY, USA. ACM Press.

Tombros, Anastasios and Mark Sanderson. 1998. Advantages of query biased

summaries in information retrieval. In SIGIR ’98: Proceedings of the 21st

Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 2–10, New York, NY, USA. ACM Press.

Voorhees, Ellen M. 2000. Overview of the TREC-9 question answering track. In

TREC.

Voorhees, Ellen M. 2003a. Evaluating answers to definition questions. In HLT-

NAACL.

Voorhees, Ellen M. 2003b. Overview of the TREC 2003 question answering track.

In TREC, pages 54–68.

Voorhees, Ellen M. 2004. Overview of the TREC 2004 question answering track.

In TREC.

118

Voorhees, Ellen M. and Hoa Trang Dang. 2005. Overview of the TREC 2005

question answering track. In TREC.

White, Michael, Tanya Korelsky, Claire Cardie, Vincent Ng, David Pierce, and Kiri

Wagstaff. 2001. Multidocument summarization via information extraction.

In HLT ’01: Proceedings of the First International Conference on Human

Language Technology Research, pages 1–7, Morristown, NJ, USA. Associa-

tion for Computational Linguistics.

Xiao, Jing, Tat-Seng Chua, and Hang Cui. 2004. Cascading use of soft and hard

matching pattern rules for weakly supervised information extraction. In

Proceedings of COLING 2004, pages 542–548, Geneva, Switzerland, Aug

23–Aug 27. COLING.

Xiao, Jing, Tat-Seng Chua, and Jimin Liu. 2003. A global rule induction approach

to information extraction. In ICTAI, pages 530–536.

Xu, Jinxi, Ana Licuanan, and Ralph M. Weischedel. 2003. TREC 2003 QA at

BBN: Answering definitional questions. In TREC, pages 98–106.

Xu, Jinxi, Ralph M. Weischedel, and Ana Licuanan. 2004. Evaluation of an

extraction-based approach to answering definitional questions. In SIGIR,

pages 418–424.

Yang, Hui, Hang Cui, Mstislav Maslennikov, Long Qiu, Min-Yen Kan, and Tat-

Seng Chua. 2003. QUALIFIER in TREC-12 QA main task. In TREC,

pages 480–488.

Yu, Hong and Vasileios Hatzivassiloglou. 2003. Towards answering opinion ques-

tions: Separating facts from opinions and identifying the polarity of opinion

sentences. In Michael Collins and Mark Steedman, editors, Proceedings of

the 2003 Conference on Empirical Methods in Natural Language Processing,

pages 129–136.

119

Zahariev, Manuel. 2003. Efficient acronym-expansion matching for automatic

acronym acquisition. In Proc. of IKE, pages 32–37.

120

Appendix A

Table A.1: Techniques Employed by Recent TREC Sys-

tems to Answer Definition Questions

TREC Sys-

tems

Linguistic Con-

structs

Bag-of-Words

Ranking

Mining External

Knowledge

Amsterdam

(Ahn et al.,

2004)

Nugget extraction

based on dependency

parsing trees.

Rank the sentences

from the corpus

by measuring their

lexical and semantic

similarity with the

facts mined from

the external refer-

ence web site. The

semantic similarity

is measured by the

distance of words in

WordNet or word co-

occurrence statistics

in large corpus.

Rely heavily on the

external reference

database - an online

encyclopedia. Mine

the facts about the

targets from the web

site.

121

BBN (Xu,

Licuanan, and

Weischedel,

2003; Xu,

Weischedel, and

Licuanan, 2004)

• Patterns iden-

tifying apposi-

tive and copu-

las constructs.

• Propositions

extracted from

parsing trees.

• 40+ man-

ual rules for

structured

definition

patterns.

• Special re-

lations ex-

tracted by a

specialized

information

extraction

module.

Assign weights to

linguistic constructs

according to the ex-

traction types.

Ranking linguistic

constructs by their

similarity with the

question profile. The

question profile is

constructed by 3

options:

1. Centroid of ex-

tracted defini-

tions from on-

line dictionar-

ies, encyclope-

dias and bio-

graphical sites.

2. Centroid of

17,000 short

biographies

for the profile

of a person.

3. Centroid of

extracted

linguistic con-

structs from

the corpus for

the target.

Constructing profiles

for targets by mining

external definitional

resources.

122

Columbia

(Blair-

Goldensohn,

McKeown, and

Schlaikjer, 2003)

Extract definitional

predicates, which

include three types

of genus, species and

non-specific defini-

tional, based on 23

manual patterns on

parsing trees.

Construct a centroid

vector for the target

by selecting frequent

non-trivial words

from all extracted

constructs. The

centroid vector is

used to rank the con-

structs by measuring

their similarity with

the centroid vector.

123

IBM PIQUANT

(Chu-Carroll et

al., 2004; Prager

et al., 2003)

• Appositions

and relative

clauses.

• Surface pat-

terns similar

to those by

Ravichandran

and Hovy

(2002).

Establish a profile

for each target. The

profile is constructed

by concepts repre-

sented by nouns that

occur more with the

target than random

occurrences. Pas-

sages are ranked by

the number of con-

cepts they contained.

• Pre-defined

auxiliary

questions for

different types

of targets.

• Hypernyms

from WordNet

to define the

terms.

• Biographical

data from

particular

website.

124

Korea Univer-

sity (Han et al.,

2004)

Extract pre-defined

constructs from syn-

tactic parsing trees

of sentences. Such

constructs include

modifying phrases of

the target, relative

pronoun phrases,

copulas, general verb

phrases, etc.

Statistical ranking of

extracted constructs

based on:

• Count of the

head word

of the target

being as the

head word in

the answer

constructs.

• Count of terms

in extracted

constructs.

• Trained

statistics of

biographical

terms from an

encyclopedia,

applying only

to persons.

Biographies from ex-

ternal encyclopedia

for training term

statistics.

LCC (Harabagiu

et al., 2003)

Utilized 38 defini-

tion patterns, out of

which 23 find match

in TREC questions.

125

MIT (Katz et

al., 2004)

16 classes of regu-

lar expression based

patterns. These pat-

terns are used to con-

struct a database of

definitions offline.

Retrieve sentences

that contain the

target and rank the

sentences by the

overlap of keywords

in the sentences

and the dictionary

definitions.

Dictionary look-up

on an online dic-

tionary and use

the dictionary def-

initions to score

sentences.

126

Table A.2: The 26 Questions for the Evaluation on the Web Corpus.
Question ID Questions
1 Who is Brooke Burke?
2 Who is Clay Aiken?
3 Who is Jennifer Lopez?
4 What is Lord of the Rings?
5 Who is Pamela Anderson?
6 What is Hurricane Isabel?
7 What is Final Fantasy?
8 Who is Harry Potter?
9 Who is Carmen Electra?
10 What is Napster?
11 What is Xbox?
12 Who is Martha Stewart?
13 Who is Osama bin Laden?
14 What is Cloning?
15 What is NASA?
16 Who is Halle Berry?
17 What is Enron?
18 What is West Nile Virus?
19 What is SARS?
20 Who is Daniel Pearl?
21 Who is Nostradamus?
22 Who is James Bond?
23 Who is Arnold Schwarzenegger?
24 Who is Mohammed Saeed al-Sahaf?
25 Who is Uday Hussein?
26 What is stem cell?

127

Appendix B

Evaluation on the Use of External

Knowledge

In this section, I briefly discuss the evaluations on the use of external knowledge

in definitional QA. The system settings are discussed in Section 4.5. I conduct

two experiments – one for the impact of external knowledge on the baseline system

that uses manually constructed definition patterns; and the other for the effects

on unsupervised learning of soft patterns through group pseudo-relevance feedback

(GPRF).

B.1 Impact of External Knowledge on the Base-

line System

I construct the baseline system by employing centroid-based ranking with a set of

manually constructed rules as listed in Table 4.2. I vary the use of task-independent

(general) and task-specific external knowledge and assess their impact on the base-

line system. Note that I denote general resources as Google snippets and WordNet

definitions, and task-specific resources as existing definitions from Answers.com. In

128

cases where both the general and the specific resources cover the same search term,

I use the specific resources. I do not include a configuration that includes both

task-specific Web knowledge and the use of WordNet. This is due to that WordNet

provides only short definitions to the question terms and the definitions are mostly

covered by the task-specific Web resources. The results are shown in Table B.1.

Table B.1: Impact of External Knowledge on the Baseline System.
Configurations NR NP F5 (% improvement)
Baseline 51.00 19.53 46.69
Baseline +
WordNet

56.13 19.72 50.88 (+8.97%)

Baseline +
Google

51.45 20.69 47.27 (+1.24%)

Baseline + Task-
specific

58.05 21.71 53.37 (+14.32%)

Baseline +
Google and
Task-specific

58.55 21.59 53.86 (+15.37%)

B.2 Impact of External Knowledge on GPRF

In this evaluation, I use the centroid-based ranking and soft patterns learned from

unsupervised labeled definition sentences determined by GPRF as the baseline. I

apply combinations of task-independent and task-specific resources to boost the

retrieval performance of centroid-based weighting. I also include an experiment

that leverages more offline learned patterns, in the form of additional supervised

soft patterns learned over the Web corpus (see Section 4.5.1). I present the results

in Table B.2.

129

Table B.2: Impact of External Knowledge on GPRF.
Configurations NR NP F5 Measure (% improvement)
Centroid +
GPRF SP
(Baseline)

60.11 22.19 53.91

Baseline +
Google

61.89 22.09 55.56 (+3.06%)

Baseline + Task-
specific

65.08 24.56 58.74 (+8.96%)

Baseline +
Google + Task-
specific

65.24 23.49 58.76 (+9.00%)

Baseline + Su-
pervised SP +
Google + Task-
specific

65.48 23.36 58.96 (+9.36%)

